
Introduction to R and RStudio

Session outline
1. What is R?
2. Why should we use R?
3. R and RStudio
4. Packages
5. Using the console
6. Scripts

What is R?
• R is a free, open source language for statistical
computing.
1992 Development began as research project in Auckland, by Robert Gentleman

and Ross Ihaka, based on the S (1976) and S‐PLUS (1988) languages.
1993 First release of R
2000 Version 1.0 released
2004 First UseR! conference in Vienna, Austria
2013 Version 3.0 released
2015 R Consortium founded
2017 10,000 packages published on CRAN
2020 Version 4.0 released

• R is one of the fastest growing programming
languages, especially for statistics and data science.

• A large (and growing) ecosystem, with over 18,000
packages.

https://www.r-consortium.org/

There are over 18,000 packages for R

https://gist.github.com/daroczig/3cf06d6db4be2bbe3368

https://gist.github.com/daroczig/3cf06d6db4be2bbe3368

Why use R?

Strengths

• Free and open source
• Big (and friendly) user
community

• Excellent resources
• Very flexible
• Over 18,000 packages
• Rapid development
• Industry adoption
• It’s a programming
language.

Why use R?

Strengths

• Free and open source
• Big (and friendly) user
community

• Excellent resources
• Very flexible
• Over 18,000 packages
• Rapid development
• Industry adoption
• It’s a programming
language.

Weaknesses
• 18,000 packages.
Which should I use?

• Rapid development
• Package management
• R is slow?

• R used to be slow;
less true today

• Many functions now
written in C++ via
Rcpp

• It’s a programming
language.

R Python Julia Stata C++

Licence Open Open Open Closed Open

Version 1.0 2000 1994 2018 1985 1985

Easy of use* Moderate Hard Moderate Easy Very hard

Extensibility Excellent Good Good Limited Very limited

Industry support Excellent Excellent Limited Limited Good

Performance OK Good Very good Good Excellent

Execution Interpreted Interpreted JIT Interpreted Compiled

*For statistical computing.

Source: https://kieranhealy.org/blog/archives/2019/02/07/statswars/

https://kieranhealy.org/blog/archives/2019/02/07/statswars/

Should I learn R or Python?

RStudio

Installing R and RStudio
R is a language.

RStudio is an environment for working with R.

Installing R and RStudio
R is a language.

RStudio is an environment for working with R.

Installing R Installing RStudio

Installing R and RStudio
R is a language.

RStudio is an environment for working with R.

Installing R Installing RStudio

Projects in RStudio

R packages

R packages
We use packages to add functionality to R.

A collection of scripts designed to implement a particular
function or method.

They represent one of the principle strengths of R: if a
method exists, someone has probably written a package.

R comes with many packages out‐of‐the‐box, such
as datasets, graphics, and stats. These are
referred to as ‘base’ packages.

Installing packages

We can install packages by typing:
install.packages("lme4")
To load this package, we’d then type:
library(lme4)
(Note the use of quotation marks.)

You should install packages once. But
you need to load them every time you
use them.

How to choose which packages to use?
My preferences:

1. Use as few packages as possible (but as many as
needed).

2. Use big general packages (rather than small
specialised ones).

3. Use packages that have been around for a long time
and are regularly updated.

4. Use stable, reliable packages.

5. At times, ignore all these rules.

Your preferences may differ!

For example: ggplot2, dplyr, tidyr, data.table, lme4

Use the CRAN Task Views

cran.r-project.org/web/views

https://cran.r-project.org/web/views/

cran.r-project.org/web/views/Epidemiology

https://cran.r-project.org/web/views/Epidemiology.html

Tip: Install packages with pak

pak.r‐lib.org

https://pak.r-lib.org

Scripts

Scripts are plain text files containing R code

Similar to Stata do‐files or SPSS syntax files.
Title: Example script
Author: Author's name
Date: Today's date
Description: This script...

library(tidyverse)
library(here)
library(lme4)

Import raw data
raw <- read.dta("source_data.dta")

Fit linear model
model_1 <- lm(y ~ x1 + x2, data = raw)

Header

Load packages

Comments

Scripts (cont.)
• You should annotate your scripts with comments.
This is a comment.
What makes a good comment?

• Save your scripts with the .R file extension
e.g., 1-Data-prep.R.

• Install packages once, load them every time you use
them. Place at the top of your script.
library(tidyverse)
library(here)

Explore at the console; save anything that matters in a script.

Scripts (cont.)
• You should annotate your scripts with comments.
This is a comment.
What makes a good comment?

• Save your scripts with the .R file extension
e.g., 1-Data-prep.R.

• Install packages once, load them every time you use
them. Place at the top of your script.
library(tidyverse)
library(here)

Explore at the console; save anything that matters in a script.

Organising your scripts
You can organise your scripts with sections and headers.
Section One ----------------------------

Section Two ============================

Section Three

These can be inserted in RStudio with Ctrl + + R or
Code Insert Section...

Organising your scripts
You can organise your scripts with sections and headers.
Section One ----------------------------

Section Two ============================

Section Three

These can be inserted in RStudio with Ctrl + + R or
Code Insert Section...

Combining several scripts
• Most analyses won’t fit in a single script/file.
⇝ You might have separate scripts for data import,

cleaning, analysis, plotting…

• We can use the source command to execute code
contained in another file.
source("1-Import-raw-data.R")
source("2-Data-cleaning.R")

The R console

Tips for the R console
• Access previous commands with / .
• Search previous commands with Ctrl + R .
• Clear the screen with Ctrl + L .

Operators

Symbols that tell the compiler to perform specific
mathematical or logical manipulations.

Arithmetic

+ addition
- subtraction
* multiplication
/ division

^ or ** raising to a
power

Relational

x < y less than
x > y greater than
x <= y less than or equal

to
x == y equal
x != y not equal

For more, see https://www.statmethods.net/management/operators.html

https://www.statmethods.net/management/operators.html

Getting help
You can get help for any function with ?.
?rnorm # Help for the 'rnorm' function
?install.packages

All help files have a consistent structure:
Description → Usage → Arguments → Details → See Also → Examples

• I find the ‘Arguments’ and ‘Examples’ sections the
most useful.

• It’s worth familiarising yourself with this structure.

Resources
1. A Succinct Introduction to R

Steve Haroz

http://r-guide.steveharoz.com

2. R for Data Science
Hadley Wickham and Garrett Grolemund

https://r4ds.hadley.nz

3. Advanced R
Hadley Wickham

https://adv-r.hadley.nz

http://r-guide.steveharoz.com
https://r4ds.hadley.nz
https://adv-r.hadley.nz

Should I use generative AI to learn R?

Should I use generative AI to learn R?

Yes:
• You need quick help debugging.
• You want to understand why your code isn’t working.
• You know what you’re doing, but want to work faster.

No:
• You’re facing a complex problem you don’t yet
understand.

• Convoluted, out‐of‐date solutions.
• Data science has minimal boiler plate code.
• We need more thinking not less.

	RStudio
	R packages
	Scripts

