
Objects and data types

Session overview
1. Objects and object assignment
2. Data types
3. More complex objects

These topics are fairly abstract.

It will make sense later.

Objects and object assignment

We’ve seen how R can be used interactively, as a
calculator.

This is great, but we often need to store things in
memory.
• To use the result of one calculation as the
input for another.

• To load some data and carry out an analysis.

So, we need some way of referring to these
saved objects.

The assignment arrow

We can store something by giving it a name:

x <- 2
y <- 4
We can then use stored objects in subsequent
calculations:

z <- x * y

We’ll return to this later…

Data types

You’ll come across many types of data

• Numeric (e.g., 1.0, 2e12)
• Integer (e.g., 1L)
• Character ("like this")
• Logical (TRUE, FALSE)
• Factors
• Missing values (e.g., NA)
• Date, times, intervals
• …

We need ways of representing these in R.

Numeric values
x <- 1
y <- 1.42

Types and type conversion

• We can query the type of an object with str or
typeof.

• We can check for specific types too, e.g.
is.numeric, is.integer.

• We can convert between types with
as.numeric, as.integer, etc.

Numeric values
x <- 1
y <- 1.42

Types and type conversion

• We can query the type of an object with str or
typeof.

• We can check for specific types too, e.g.
is.numeric, is.integer.

• We can convert between types with
as.numeric, as.integer, etc.

Characters (or ‘strings’)
> first <- "Joe"
> last <- "Bloggs"
> age <- "40"

> is.character(first)
[1] TRUE

> paste(first, last)
[1] "Joe Bloggs"

> age + 10
Error in age + 10 : non-numeric argument...
> age <- as.numeric(age)
> age + 10
[1] 50

Logical (or boolean) values
> 5 > 4
[1] TRUE
> "Joe" == "Bloggs"
[1] FALSE
> "Joe" == "Joe"
[1] TRUE

> typeof(TRUE)
[1] "logical"

> str(TRUE)
logi TRUE

> TRUE == FALSE
[1] FALSE

> !(TRUE)
[1] FALSE

> TRUE & FALSE
[1] FALSE

> TRUE | FALSE
[1] TRUE

> any(TRUE, FALSE, FALSE)
[1] TRUE

> all(TRUE, FALSE, FALSE)
[1] FALSE

Categorical values
• Binary (e.g. sex)

• Nominal (e.g. ethnicity)
• Ordinal (e.g. education)

Binary values can be represented with TRUE/FALSE
or 0/1:
> mtcars$ineff <- ifelse(mtcars$mpg < 15,
> TRUE, FALSE)
> mtcars$ineff
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[13] FALSE FALSE TRUE TRUE TRUE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> as.numeric(mtcars$ineff)
[1] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 [...]

Nominal or ordinal values can be represented as factors.

A factor represents categorical data in terms of a
numeric value and an associated label.

factor(X, levels, labels)

An input vector

The categories
that X can take

Labels for the
categories

must be in the same order

If you’re familiar with Stata, this is similar to ‘values’ and ‘value labels’.

> marital
[1] "Never married" "Divorced" "Widowed"
[4] "Never married" "Divorced" "Married"
[7] "Never married" "Divorced" "Married"

[10] "Married" "Married" "Married"
[13] "Married" "Married" "Divorced"
[...]

> table(marital)
marital

Divorced Married Never married
3383 10117 5416

No answer Separated Widowed
17 743 1807

> typeof(marital)
[1] "character"

> marital_f <- factor(marital)
> marital_f
[1] Never married Divorced Widowed Never married
[5] Divorced Married Never married Divorced
[9] Married Married Married Married

[...]
Levels: Divorced Married Never married No answer

Separated Widowed

> typeof(marital_f)
[1] "integer"

> as.numeric(marital_f)
[1] 3 1 6 3 1 2 3 1 2 2 2 2 2 2 1
[16] 2 6 3 2 2 2 2 3 6 6 6 6 6 1 6
[31] 6 2 2 3 2 3 3 3 3 3 2 2 1 3 3
[46] 3 2 2 2 2 3 2 2 2 2 1 1 1 3 3

> marital_n
[1] 3 1 6 3 1 2 3 1 2 2 2 2 2 2 1
[16] 2 6 3 2 2 2 2 3 6 6 6 6 6 1 6
[31] 6 2 2 3 2 3 3 3 3 3 2 2 1 3 3

> categories <- c("Divorced",
> "Married",
> "Never married",
> "No answer",
> "Separated",
> "Widowed")

> marital_f <- factor(marital_n,
> levels = 1:6,
> labels = categories)

Missing values
We can represent missing values with NA.

We can check for missing values:
> is.na(NA)
[1] TRUE
Do not confuse NA with NaN.

NaN, not a number, a numeric value representing an
undefined or unrepresentable value.

> 0/0
[1] NaN
> is.nan(0/0)
[1] TRUE

> is.nan(1)
[1] FALSE
> is.na(NaN)
[1] TRUE

You may require a more informative representation of
missing values.

For example:
• Not applicable
• Don’t know
• Refused

For this, I would use integers:
-777 Not applicable
-888 Don't know
-999 Refused

e.g., as.integer(-777).

We’ve covered several type conversions, but there are many more…

as.Date
as.character
as.numeric
as.ordered
as.difftime
as.double
as.complex
...

as.difftime
as.double
as.complex
...

RStudio tip: Tab expansion

You can use tab expansion to
see a list of available commands.

We’ve covered several type conversions, but there are many more…

as.Date
as.character
as.numeric
as.ordered
as.difftime
as.double
as.complex
...

as.difftime
as.double
as.complex
...

RStudio tip: Tab expansion

You can use tab expansion to
see a list of available commands.

Objects

Objects

An object is anything we want to store in memory.

To store an object, we use the assignment operator.

x<-1
y<-"Astring"
z<-TRUE

If you don’t assign the result to an object, R will print the
result and instantly forget what happened.

More complex objects

Vectors
• Vectors can be thought of as contiguous
cells containing data.

• Vectors can contain any data type (e.g.
logical, integer, string).

• However, a given vector can only contain
one type (i.e., you can’t mix them).

• Vectors can be defined with the c or seq
commands.

Defining vectors
By hand
one_to_five <- c(1, 2, 3, 4, 5)

Using the 'seq' function
lazy <- seq(from = 1,

to = 5,
by = 1)

Same, but without naming the arguments
lazier <- seq(1, 5, 1)

Using ':'
laziest <- 1:5

Matrices
A matrix is a rectangular array of data.1 2 3

4 5 6
7 8 9


They can be created with the matrix or array
functions.

Matrices
> # Define a vector of integers.
> x <- 1:20

> # Fill matrix columns with 'x'
> matrix(x, ncol = 5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
By default, matrix fills by column. We can instead fill by
row with the byrow option:
matrix(x, ncol = 5, byrow = TRUE)

> matrix(x, ncol = 5)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

> matrix(x, ncol = 5, byrow = TRUE)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20

Arrays
An array is a vector with one or more dimensions.

We don’t often use them.

	Objects and object assignment
	Data types
	Objects
	More complex objects

