
Overview
1. Data frames
2. Importing and exporting data
3. Lists
4. Subsetting

Data frames

Data frames

A data frame is a tabular object consisting of rows and
columns.

This is similar to Stata or SPSS datasets, or Excel
spreadsheets.

Data frames
We can create data frames with the data.frame function:
Define three vectors
> x <- sample(1:100, 5)
> y <- letters[1:5]
> z <- rnorm(5)

Combine them to create a data frame
> data.frame(x, y, z)

x y z
1 41 a 0.41417411
2 88 b -0.61963691
3 21 c 0.12795071
4 10 d -1.20726869
5 37 e -0.07773731

You can define the vectors and data frame together:

> data.frame(var1 = c(1, 2, 3, 4, 5),
> var2 = seq(1, 5),
> var3 = 1:5)

var1 var2 var3
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5

Most of the time, we’re importing data from other sources
(e.g., from SPSS, Stat, Excel, or CSV).

(More on that in a moment).

5 things you should know about data frames
1. All variables must be of equal length.

2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

5 things you should know about data frames
1. All variables must be of equal length.

2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

5 things you should know about data frames
1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

5 things you should know about data frames
1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

5 things you should know about data frames
1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

5 things you should know about data frames
1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

5 things you should know about data frames
1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

5 things you should know about data frames
1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

5 things you should know about data frames
1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

> data.frame(1:5, 1:4)
Error in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

> mydata <- data.frame(v1 = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names(mydata)
[1] "v1" "v2"
>
> names(mydata) <- c("id", "response")

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

head(mydata) # Returns 6 rows by default
tail(mydata)
head(mydata, 20) # But we can request more.
These functions (head/tail) can be applied to other objects.

Importing data

Importing data
We often need to work with data stored as:

.csv Comma‐ or tab‐separated values (CSV, TSV)

.xlsx Microsoft Excel files

.sav SPSS datasets

.dta Stata datasets

(Any others?).

readr CSV and TSV

readxl Microsoft Excel

haven Stata, SPSS, SAS

https://r4ds.hadley.nz/data-import.html

https://r4ds.hadley.nz/data-import.html

Importing CSVs with readr

> library(readr)
> cars <- read_csv("cars.csv")
Rows: 50 Columns: 2
-- Column specification --
Delimiter: ","
dbl (2): speed, dist

Use `spec()` to retrieve the full column specification
for this data.

> head(cars)
speed dist

1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10

It’s not always so easy…

le_cols <- cols(`Country Name` = col_character(),
`Country Code` = col_character(),
`Series Name` = col_character(),
`Series Code` = col_character(),
`2019 [YR2019]` = col_double())

life_expectancy <- read_csv("life_expectancy.csv",
n_max = 49,
na = "..",
col_types = le_cols)

Importing Excel files with readxl
> library(readxl)
> cars <- read_xlsx("cars.xlsx")

Like read_csv, column types will be guessed. This isn’t
always helpful. Some useful arguments:

sheet Specify a sheet (e.g., 1 or "Sheet1").
range Specify a range (e.g., B3:D87).
col_types Specify the column types.
na Specify which values should be

interpreted as NA.
skip Skip the first few rows (e.g., skip = 5).
n_max Specify how many rows to import.

Importing Stata/SPSS/SAS files with haven
> library(haven)
> df_stata <- read_dta("stata.dta")
> df_spss <- read_sav("spss.sav")
> df_sas <- read_sav("sas.sas7bdat")

We can also import from a URL:
> df_stata <- read_dta(
> "http://www.stata-press.com/data/r17/auto.dta"
>)

Importing Stata/SPSS/SAS files with haven
> library(haven)
> df_stata <- read_dta("stata.dta")
> df_spss <- read_sav("spss.sav")
> df_sas <- read_sav("sas.sas7bdat")
We can also import from a URL:
> df_stata <- read_dta(
> "http://www.stata-press.com/data/r17/auto.dta"
>)

To export, find the corresponding write_* function:

• write_csv

• write_xlsx (from the writexl package).

• write_dta, write_sav

To learn more:

https://r4ds.hadley.nz/import.html

And then:

https://readr.tidyverse.org
https://readxl.tidyverse.org
https://haven.tidyverse.org
https://docs.ropensci.org/writexl/

https://r4ds.hadley.nz/import.html
https://readr.tidyverse.org
https://readxl.tidyverse.org
https://haven.tidyverse.org
https://docs.ropensci.org/writexl/

Lists

Lists
• A list can contain other objects (of any type).

Lists
• A list can contain other objects (of any type).

Lists
• A list can contain other objects (of any type).

Lists
• A list can contain other objects (of any type).

Even other lists…

Create some objects
x <- "A string." # Character
y <- seq(1, 100, 2) # Vector
z <- data.frame(a = rnorm(10),

y = 1:10) # Data frame

Create a list
my_list <- list(x, y, z)

> my_list
[[1]]
[1] "A string."

[[2]]
[1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
[29] 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

[[3]]
rnorm.100. X1.100

1 0.455326375 1
2 0.692059671 2
3 0.326601040 3
4 0.840223512 4
5 -0.069551338 5
6 -1.833135236 6
7 -0.357850563 7
8 -0.518503646 8

Create some objects
x <- "A string." # Character
y <- seq(1, 100, 2) # Vector
z <- data.frame(a = rnorm(10),

y = 1:10) # Data frame

Create a list
my_list <- list(x, y, z)
> my_list
[[1]]
[1] "A string."

[[2]]
[1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
[29] 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

[[3]]
rnorm.100. X1.100

1 0.455326375 1
2 0.692059671 2
3 0.326601040 3
4 0.840223512 4
5 -0.069551338 5
6 -1.833135236 6
7 -0.357850563 7
8 -0.518503646 8

Subsetting

Subsetting
• Subsetting is how we extract things from objects.

• For example, you have a vector of 4 integers, and you
want the 3rd item.

• Or you want to extract particular rows or columns
from a data.frame.

• You will use this all the time.
• Helpful to combine with str.

i) Check object structure with str;
ii) Select required elements with subsetting.

Subsetting
• Subsetting is how we extract things from objects.
• For example, you have a vector of 4 integers, and you
want the 3rd item.

• Or you want to extract particular rows or columns
from a data.frame.

• You will use this all the time.
• Helpful to combine with str.

i) Check object structure with str;
ii) Select required elements with subsetting.

Subsetting
• Subsetting is how we extract things from objects.
• For example, you have a vector of 4 integers, and you
want the 3rd item.

• Or you want to extract particular rows or columns
from a data.frame.

• You will use this all the time.
• Helpful to combine with str.

i) Check object structure with str;
ii) Select required elements with subsetting.

Subsetting
• Subsetting is how we extract things from objects.
• For example, you have a vector of 4 integers, and you
want the 3rd item.

• Or you want to extract particular rows or columns
from a data.frame.

• You will use this all the time.

• Helpful to combine with str.
i) Check object structure with str;
ii) Select required elements with subsetting.

Subsetting
• Subsetting is how we extract things from objects.
• For example, you have a vector of 4 integers, and you
want the 3rd item.

• Or you want to extract particular rows or columns
from a data.frame.

• You will use this all the time.
• Helpful to combine with str.

i) Check object structure with str;
ii) Select required elements with subsetting.

Subsetting vectors
We can select elements by position with square brackets
(e.g. x[4]).

x <- c("A", "B", "C", "D", "E", "F")

x[1] # 1st element
x[3] # 3rd element
x[length(x)] # Last element

We can use a vector to select multiple items.

x[c(1, 2)] # 1st & 2nd element
x[1:5] # First 5 elements
x[seq(1, 6, 2)] # Odd elements

Subsetting vectors
We can select elements by position with square brackets
(e.g. x[4]).

x <- c("A", "B", "C", "D", "E", "F")

x[1] # 1st element
x[3] # 3rd element
x[length(x)] # Last element

We can use a vector to select multiple items.

x[c(1, 2)] # 1st & 2nd element
x[1:5] # First 5 elements
x[seq(1, 6, 2)] # Odd elements

We can omit items by negating the index.
x[-1] # All except 1st
x[-(1:3)] # 4th to 6th only
x[-c(5, 6)] # All except 5/6th

Subsetting matrices
This is the same, but now we have two dimensions.

mat <- matrix(1:20, ncol = 5)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

We can select single elements by row and column
position: mat[row, col]

mat[1, 1] # Row 1, column 1.
mat[1, 2] # Row 1, column 2.

As before, we can select multiple elements and omit
elements with negation.

mat[1, c(1, 3)] # Row 1, columns 1 & 3.
mat[1:3, 2:4] # Rows 1-3, columns 2-4.
mat[-1, -1] # Omit first row/column.

If we omit an index, that entire row/column is returned.
mat[1,] # Row 1, all columns.
mat[, 2:3] # All rows, columns 2-3.

Subsetting data frames

We’re using the starwars dataset from tidyverse.

> data(starwars)
> head(starwars)

name height mass hair_color skin_color eye_color
Luke Skywalker 172 77 blond fair blue

C-3PO 167 75 <NA> gold yellow
R2-D2 96 32 <NA> white, blue red

Darth Vader 202 136 none white yellow

birth_year gender homeworld species
19.0 male Tatooine Human

112.0 <NA> Tatooine Droid
33.0 <NA> Naboo Droid
41.9 male Tatooine Human

We can select columns by name:
starwars$height
[1] 172 167 96 202 150 178 165 97 183 182 188 180 228 180 173 175

[17] 170 180 66 170 183 200 190 177 175 180 150 NA 88 160 193 191

Or, alternatively:
starwars[["height"]]

Or by position:
starwars[[2]]

We can select multiple columns:
starwars[, c("height","species")]
starwars[, c(1, 2)]

We can select columns by name:
starwars$height
[1] 172 167 96 202 150 178 165 97 183 182 188 180 228 180 173 175

[17] 170 180 66 170 183 200 190 177 175 180 150 NA 88 160 193 191

Or, alternatively:
starwars[["height"]]

Or by position:
starwars[[2]]

We can select multiple columns:
starwars[, c("height","species")]
starwars[, c(1, 2)]

We can select columns by name:
starwars$height
[1] 172 167 96 202 150 178 165 97 183 182 188 180 228 180 173 175

[17] 170 180 66 170 183 200 190 177 175 180 150 NA 88 160 193 191

Or, alternatively:
starwars[["height"]]

Or by position:
starwars[[2]]

We can select multiple columns:
starwars[, c("height","species")]
starwars[, c(1, 2)]

We can select columns by name:
starwars$height
[1] 172 167 96 202 150 178 165 97 183 182 188 180 228 180 173 175

[17] 170 180 66 170 183 200 190 177 175 180 150 NA 88 160 193 191

Or, alternatively:
starwars[["height"]]

Or by position:
starwars[[2]]

We can select multiple columns:
starwars[, c("height","species")]
starwars[, c(1, 2)]

Subsetting lists

A list can contain any number of other objects (even other
lists). We need some way of referring the elements of a list as
well as the contents of these elements.

Suppose we have a list with three elements:
x <- list(1:3, "a", 4:6)

Select the first element
with x[1]:

Select the contents of the first
element with x[[1]]:

https://adv-r.hadley.nz

https://adv-r.hadley.nz

> x <- list(1:3, "a", 4:6)
> x
[[1]]
[1] 1 2 3

[[2]]
[1] "a"

[[3]]
[1] 4 5 6

> x[1]
[[1]]
[1] 1 2 3

> x[[1]]
[1] 1 2 3

We can select elements contained
within other elements by
combining subsetting operators.
> x[[1]][1]
[1] 1

> x[[3]][2]
[1] 5

This also applies to data frames:

Select the contents of the height column:
starwars[["height"]
starwars$height
starwars[[2]]

Select the entire column, returning a data frame:
starwars["height"]
starwars[, "height"]
starwars[2]
starwars[, 2]

Subsetting named lists
We can create a list with named elements.

> x <- list(first = seq(0, 50, 5),
> second = c("A", "string", "vector"),
> third = rnorm(10))
> x
$first
[1] 0 5 10 15 20 25 30 35 40 45 50

$second
[1] "A" "string" "vector"

$third
[1] -0.11864667 1.20817170 -0.59353976 1.91463235
[7] -0.53772881 0.06389441 0.91135953 -0.91389382

We can then select items by name:

> x$first
[1] 0 5 10 15 20 25 30 35 40 45 50

> x["third"]
[1] -0.11864667 1.20817170 -0.59353976 1.91463235
[7] -0.53772881 0.06389441 0.91135953 -0.91389382

Again, notice the difference between [[and [:

> x[["third"]]
[1] -0.11864667 1.208171
[7] -0.53772881 0.063894

> x["third"]
$third
[1] -0.11864667 1.208171
[7] -0.53772881 0.063894

We can then select items by name:

> x$first
[1] 0 5 10 15 20 25 30 35 40 45 50

> x["third"]
[1] -0.11864667 1.20817170 -0.59353976 1.91463235
[7] -0.53772881 0.06389441 0.91135953 -0.91389382

Again, notice the difference between [[and [:

> x[["third"]]
[1] -0.11864667 1.208171
[7] -0.53772881 0.063894

> x["third"]
$third
[1] -0.11864667 1.208171
[7] -0.53772881 0.063894

Materials on subsetting are adapted from Chapter 4 of
Advanced R, available online at:

https://adv‐r.hadley.nz/subsetting.html

