Overview

1. Data frames

2. Importing and exporting data
3. Lists

4. Subsetting

Data frames

Data frames

A data frame is a tabular object consisting of rows and
columns.

Row names /Column names
\\\‘ mpg cyl disp hp drat wt
Mazda RX4 21.0 6 160 110 3.9 2.6
Mazda RX4 Wag 21.0 6 160 110 3.9 2.9
Datsun 710 22.8 4 108 93 3.9 2.3
Hornet 4 Drive 21.4 6 258 110 3.1 3.2
Hornet Sportabout 18.7 8 360 175 3.2 3.4
Valiant 18.1 6 225 105 2.8 3.5
Duster 360 14.3 8 360 245 3.2 3.6
Merc 240D 24.4 4 147 62 3.7 3.2
Merc 230 22.8 4 141 95 3.9 3.2

This is similar to Stata or SPSS datasets, or Excel
spreadsheets.

Data frames

We can create data frames with the data.frame function:
i# Define three vectors

> X <- sample(1:100, 5)

y <- letters[1:5]

> z <- rnoxrm(5)

A\

Combine them to create a data frame
> data.frame(x, y, z)

Xy z
41 a 0.41417411
88 b -0.61963691
21 ¢ 0.12795071
10 d -1.20726869
37 e -0.07773731

oa b ownN ke

You can define the vectors and data frame together:

> data.frame(varl = c(1, 2, 3, 4, 5),

> var2 = seq(l, 5),
> var3 = 1:5)

varl var2 var3

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

Most of the time, we're importing data from other sources
(e.g., from SPSS, Stat, Excel, or CSV).

(More on that in a moment).

5 things you should know about data frames

1. All variables must be of equal length.

5 things you should know about data frames

1. All variables must be of equal length.

> data.frame(1:5, 1:4)
Exrror in data.frame(1:5, 1:4)
arguments imply differing number of rows: 5, 4

5 things you should know about data frames

1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

5 things you should know about data frames

1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

5 things you should know about data frames

1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and

names.
> mydata <- data.frame(vl = 1:4,
> v2 = c("Strongly agree",
> "Agree",
> "Disagree",
> "Strongly agree"))
> names (mydata)
[1] "va" "v2"
>

> names(mydata) <- c("id", "response")

5 things you should know about data frames

1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5 things you should know about data frames

1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can

be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

> nrow(mydata)
[1] 2

> ncol(mydata)
[1] 4

5 things you should know about data frames

1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

5 things you should know about data frames

1. All variables must be of equal length.
2. Variables can be of different types. (Unlike a matrix).

3. A data frame has row and column names. These can
be accessed (and changed) with rownames and
names.

4. You can count the number of rows/columns with
nrow and ncol.

5. You can view the top/bottom of a data frame with
head and tail.

head (mydata) # Returns 6 rows by default
tail (mydata)
head(mydata, 20) # But we can request more.

These functions (head/tail) can be applied to other objects.

Importing data

Importing data
We often need to work with data stored as:

.CSV Comma- or tab-separated values (CSV, TSV)

.x1sx Microsoft Excel files
.sav SPSS datasets

.dta Stata datasets

(Any others?).

readr CSV and TSV

A~
'Ioo‘

readxl Microsoft Excel

readxl

haven Stata, SPSS, SAS

https://r4ds.hadley.nz/data-import.html

https://r4ds.hadley.nz/data-import.html

Importing CSVs with readr

[) AutoSave @ orf D v

Home Insert Draw Q Tellme CJ Comments & Share

uog e
A B C
1 |[speed dist

10

22
16
10

10 18
10 26

O 00 NO LIS, WN
W 00NN D
IS

+
Elo o -

o
o
o

<

— 4 240%

> library(readr)

> cars <- read_csv("cars.csv")

Rows: 50 Columns: 2

== CoOLUmn SPECLILCATION ccrrosssorrroroosssooonossssssas

Delimiter: ",
dbl (2): speed, dist

Use ‘spec()’ to retrieve the full column specification
for this data.

> head(cars)
speed dist

4 2
10
4
22
16
10

ok, wWNE
O 003 B~

It's not always so easy...

le_cols <- cols(Country Name® = col_character(),

"Country Code’ = col_character(),
‘Series Name' = col character(),
‘Series Code’ = col _character(),

"2019 [YR2019]" = col_double())

life_expectancy <- read_csv("life_expectancy.csv",
n_max = 49,
na = "..",
col_types = le_cols)

Importing Excel files with readxl

> library(readxl)
> cars <- read xlsx("cars.xlsx")

Like read_csv, column types will be guessed. This isn’t
always helpful. Some useful arguments:

sheet
range
col_types
na

skip
n_max

Specify a sheet (e.g., 1 or "Sheetl").
Specify a range (e.g., B3:D87).

Specify the column types.

Specify which values should be
interpreted as NA.

Skip the first few rows (e.g., skip = 5).
Specify how many rows to import.

Importing Stata/SPSS/SAS files with haven

> library(haven)

> df_stata <- read_dta("stata.dta")
> df_spss <- read_sav('"spss.sav")

> df_sas <- read_sav("sas.sas7bdat")

Importing Stata/SPSS/SAS files with haven

library (haven)

df_stata <- read_dta("stata.dta")
df_spss <- read_sav("spss.sav")
df_sas <- read_sav("sas.sas7bdat")

We can also import from a URL:

> df_stata <- read_dta(
> "http://www.stata-press.com/data/r17/auto.dta"
>)

>
>
>
>

To export, find the corresponding write_x function:

e write_csv
e write_xlsx (from the writexl package).

e write_dta, write_sav

To learn more:

https://r4ds.hadley.nz/import.html

And then:

https://readr.tidyverse.org
https://readxl.tidyverse.org
https://haven.tidyverse.org
https://docs.ropensci.org/writexl/

https://r4ds.hadley.nz/import.html
https://readr.tidyverse.org
https://readxl.tidyverse.org
https://haven.tidyverse.org
https://docs.ropensci.org/writexl/

Lists

Lists

e A list can contain other objects (of any type).

Lists

e A list can contain other objects (of any type).

L] b
NA || TRUE

Lists

e A list can contain other objects (of any type).

o) (e

))
L]

Lists

e A list can contain other objects (of any type).

I ||

N~—_—

N~——

BTN

Even other lists... @'

Create some objects

x <- "A string."

y <- seq(1, 100, 2)

z <- data.frame(a
y

rnorm(10),
1:10)

i Create a list
my_list <- list(x, y, z)

{## Character
Vector

it Data frame

Create some objects

x <- "A string." # Character
y <- seq(l, 100, 2) # Vector
z <- data.frame(a = rnorm(10),

y = 1:10) # Data frame
> my_list

[[1]]
[1] "A string."

[[2]]
[1] 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 3
[29] 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89

(0311

rnorm.100. X1.100
0.455326375
0.692059671
0.326601040
0.840223512
-0.069551338

abr wNpE
abh wNPE

Subsetting

Subsetting

e Subsetting is how we extract things from objects.

Subsetting

e Subsetting is how we extract things from objects.

e For example, you have a vector of 4 integers, and you
want the 3™ item.

Subsetting

e Subsetting is how we extract things from objects.

e For example, you have a vector of 4 integers, and you
want the 3™ item.

¢ Or you want to extract particular rows or columns
from a data.frame.

Subsetting

Subsetting is how we extract things from objects.

For example, you have a vector of 4 integers, and you
want the 3™ item.

¢ Or you want to extract particular rows or columns
from a data.frame.

You will use this all the time.

Subsetting

e Subsetting is how we extract things from objects.

e For example, you have a vector of 4 integers, and you
want the 3™ item.

¢ Or you want to extract particular rows or columns
from a data.frame.

e You will use this all the time.

e Helpful to combine with stz.

i) Check object structure with str;
ii) Select required elements with subsetting.

Subsetting vectors
We can select elements by position with square brackets
(e.g. x[4]).
X <_ C("A“, IIBII, IICII' IIDII, IIEII, IIFII)
x[1] {## 1st element

x[3] # 3rd element
x[length(x)] {## Last element

Subsetting vectors
We can select elements by position with square brackets
(e.g. x[4]).
X <_ C("A“, IIBII, IICII' IIDII, IIEII' IIFII)
x[1] {## 1st element

x[3] # 3rd element
x[length(x)] {## Last element

We can use a vector to select multiple items.

x[c(l, 2)] # 1st & 2nd element
x[1:5] ## First 5 elements
x[seq(1, 6, 2)] 4 0dd elements

We can omit items by negating the index.
x[-1] # All except 1st
x[-(1:3)] # 4th to 6th only
x[-c(5, 6)] # All except 5/6th

Subsetting matrices
This is the same, but now we have two dimensions.

mat <- matrix(1:20, ncol = 5)

[,1] [,2] [,3]1 [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

We can select single elements by row and column
position: mat[row, col]

mat[1, 1] # Row 1, column 1.
mat[1l, 2] ## Row 1, column 2.

As before, we can select multiple elements and omit
elements with negation.

mat[1, c(1, 3)] 4 Row 1, columns 1 & 3.
mat[1:3, 2:4] ## Rows 1-3, columns 2-4.
mat[-1, -1] ## Omit first row/column.

If we omit an index, that entire row/column is returned.

mat[1,] ## Row 1, all columns.
mat[, 2:3] ## A1l rows, columns 2-3.

Subsetting data frames

We're using the starwars dataset from tidyverse.

> data(starwars)
> head(starwars)
name height mass hair_color skin_color eye_c

Luke Skywalker 172 77 blond fair
C-3P0 167 75 <NA> gold ye

R2-D2 96 32 <NA> white, blue
Darth Vader 202 136 none white ye

birth_year gender homeworld species
19.0 male Tatooine Human
112.0 <NA> Tatooine Droid
33.0 <NA> Naboo Droid
41.9 male Tatooine Human

We can select columns by name:
starwars$height

[1] 172 167 96 202 150 178 165 97 183 182 1¢
[17] 170 180 66 170 183 200 190 177 175 180 1F%

We can select columns by name:
starwars$height

[1] 172 167 96 202 150 178 165 97 183 182 1¢
[17] 170 180 66 170 183 200 190 177 175 180 1F%

Or, alternatively:
starwars[["height"]]

We can select columns by name:
starwars$height

[1] 172 167 96 202 150 178 165 97 183 182 1¢
[17] 170 180 66 170 183 200 190 177 175 180 1F%

Or, alternatively:
starwars[["height"]]

Or by position:
starwars[[2]]

We can select columns by name:
starwars$height

[1] 172 167 96 202 150 178 165 97 183 182 1¢
[17] 170 180 66 170 183 200 190 177 175 180 1F%

Or, alternatively:
starwars[["height"]]

Or by position:
starwars[[2]]

We can select multiple columns:
starwars[, c("height", "species")]
starwars[, c(1, 2)]

Subsetting lists

A list can contain any number of other objects (even other
lists). We need some way of referring the elements of a list as
well as the contents of these elements.

https://adv-r.hadley.nz

> X <- list(1:3, "a", 4:6)
> X

[[1]]

[1] 1 2 3

[[21]
[1] "a’

[[31]
[1] 456

> x[1]
[[1]1]
[1] 12 2 3

> x[[1]]
[11 123

This also applies to data frames:

Select the contents of the height column:

starwars[["height"]
starwars$height x[[111 1] 2]3
starwars[[2]]

Select the entire column, returning a data frame:

starwars["height"]

starwars[, "height"]
starwars[2] < “

starwars[, 2]

Subsetting named lists

We can create a list with named elements.

> x <- list(first = seq(0, 50, 5),

> second = c("A", "string", "vector"),
> third = rnorm(10))

> X

$first

[1] 0 5 10 15 20 25 30 35 40 45 50

$second
(1] "A" "string" "vector"

$third
[1] -0.11864667 1.20817170 -0.59353976 1.91463235
[7] -0.53772881 0.06389441 0.91135953 -0.91389382

We can then select items by name:

> x$first
[1] O 5 10 15 20 25 30 35 40 45 50

> x["third"]

[1] -0.11864667 1.20817170 -0.59353976 1.91463235
[7] -0.53772881 0.06389441 0.91135953 -0.91389382

We can then select items by name:

> x$first
[1] O 5 10 15 20 25 30 35 40 45 50

> x["third"]
[1] -0.11864667 1.20817170 -0.59353976 1.91463235
[7] -0.53772881 0.06389441 0.91135953 -0.91389382

Again, notice the difference between [[and [:

> x[["third"]] > x["third"]
[1] -0.11864667 1.208171 $third
[7] -0.53772881 0.063894 [1] -0.11864667 1.208171

[7] -0.53772881 0.063894

1123

Materials on subsetting are adapted from Chapter 4 of
Advanced R, available online at:

https:/adv-r.hadley.nz/subsetting.html

