
Functions and control flow

Outline
1. Functions in R

• What is a function?
• How to use functions
• Writing your own functions

2. Iteration
3. Control flow

[50 minutes]

Functions in R

Functions

A function takes inputs, does something with them, and
returns the result.

Many functions come with R or are added via packages
(e.g., min , mean , head).

But the ability to write your own functions
is very powerful.

Functions

A function takes inputs, does something with them, and
returns the result.

Many functions come with R or are added via packages
(e.g., min , mean , head).

But the ability to write your own functions
is very powerful.

add_one <- function(x) {
return(x + 1)

}

add_one(2)
[1] 3

multiply <- function(x, y) {
return(x * y)

}

multiply(2, 3)
[1] 6

“A good rule of thumb is to consider
writing a function whenever you’ve
copied and pasted a block of code more
than twice (i.e. you now have three
copies of the same code).”

Hadley Wickham, R for Data Science (2e) (2023).

Things you should know about functions
1. Functions are objects.
2. We call a function by typing its name followed by
parentheses.

3. Arguments can be named or positional.
4. Arguments can have defaults.
5. We can use return within our function to return a
result. (But we don’t have to).

my_exciting_function <- function(x, y) {
...

}

Things you should know about functions
1. Functions are objects.
2. We call a function by typing its name followed by
parentheses.

3. Arguments can be named or positional.
4. Arguments can have defaults.
5. We can use return within our function to return a
result. (But we don’t have to).

my_exciting_function()

What happens if we omit ()?
my_exciting_function

Things you should know about functions
1. Functions are objects.
2. We call a function by typing its name followed by
parentheses.

3. Arguments can be named or positional.
4. Arguments can have defaults.
5. We can use return within our function to return a
result. (But we don’t have to).

These are equivalent:
rnorm(100, mean = 0, sd = 1)

rnorm(100, 0, 1)

Things you should know about functions
1. Functions are objects.
2. We call a function by typing its name followed by
parentheses.

3. Arguments can be named or positional.
4. Arguments can have defaults.
5. We can use return within our function to return a
result. (But we don’t have to).

my_function <- function(x = 1,
y = TRUE) {

...
}

rnorm()

See help (e.g. ?rnorm) to learn about default arguments.

Things you should know about functions
1. Functions are objects.
2. We call a function by typing its name followed by
parentheses.

3. Arguments can be named or positional.
4. Arguments can have defaults.
5. We can use return within our function to return a
result. (But we don’t have to).

my_exciting_function <- function(x, y) {
return(x * y)

}

my_exciting_function <- function(x, y) {
x * y

}

What’s the difference between these three functions?

f1 <- function(x, y) {
return(x * y)

}

f2 <- function(x, y) {
print(x * y)

}

f3 <- function(x, y) {
cat(x * y)

}

Example 1

Rolling a dice

roll_dice <- function() {
sample(1:6, 1)

}

roll_dice()

Example 2

Calculating BMI

calculate_bmi <- function(weight, height) {
weight / (height^2)

}

Example: 70kg and 1.75m
calculate_bmi(70, 1.75)

Example 3

A function to format the
coefficients from a regression model

p <- function(x) { sprintf("%.1f", x) }

format_coef <- function(est, lo, hi) {
str_glue("{p(est)} [{p(lo)}, {p(hi)}]")

}

format_coef(1.4188, 1.2103, 1.6120)
1.4 [1.2, 1.6]

Example 4
A function to import Qualitrics extracts (*.xlsx):

import_qualtrics <- function(path) {
metadata <- readxl::read_xlsx(path,

n_max = 2,
col_names = FALSE,
.name_repair = "minimal"

)
d_name <- metadata[1,] |>

as.character() |>
janitor::make_clean_names()

d_label <- metadata[2,] |> as.character()
data <- readxl::read_xlsx(path, skip = 2,

col_names = d_name)
labelled::var_label(data) <- setNames(d_label,

d_name)
return(data)

}

Iteration

Iteration

Computers are good at repeating things

Like any programming language, R provides
many tools for iteration.

We’ll look at two today:

1. Loops
2. Vectorised functions

In Session 4, we’ll extend this to explore the
functional programming tools in R — another
approach to iteration.

Loops

Iterate through a sequence of things, and do some
operation at each iteration.

For example, we might loop through a numeric vector and
perform some calculation on each element.

Loops
In R, we use the for statement:

for (THING in SEQUENCE) {
DO SOMETHING

}

For example:

for (i in 1:10) {
print(i)

}

Loops
In R, we use the for statement:

for (THING in SEQUENCE) {
DO SOMETHING

}
For example:

for (i in 1:10) {
print(i)

}

> for (i in 1:10) {
+ print(i)
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10

i refers to the current
element of the sequence.

You don’t have to use i :

for (thing in 1:10) {
print(thing)

}

Loop over elements of a vector
months <- c("January", "February", "March")
for (i in months) {

print(i)
}

Nested loops
for (i in 1:10) {

for (j in seq(5, 25, 5)) {
print(i * j)

}
}

Using loops to update a list or vector
e.g., iterate through a sequence, perform a calculation, and
store the result in a new vector.

Define an empty vector to store results
> results <- vector(mode = "numeric",
> length = 10)
> for (i in 1:10) {
> results[i] <- sqrt(i)
> }

> results
[1] 1.000000 1.414214 1.732051
[4] 2.000000 2.236068 2.449490
[7] 2.645751 2.828427 3.000000
[10] 3.162278

‘Vectorised’ functions
• Many functions in R are vectorised.
• This means they operate on all elements of a vector
without the need for looping.

For example, mean() or min() :

> x <- c(8, 1, 12, 5, 21, 4)
> mean(x)
[1] 8.5

> min(x)
[1] 1

Use vectorised functions wherever possible.

> library(rbenchmark)
> x <- sample(1:100, 1e4, replace = TRUE)
> head(x)
[1] 79 4 13 25 16 30

> my_mean <- function(x) {
> total <- 0
> for (i in x) {
> total <- total + i
> }
> return(total / length(x))
> }

> benchmark("My function" = { my_mean(x) },
> "Vectorised function" = { mean(x) },
> replications = 1e5)

test replications elapsed relative
1 My function 100000 10.361 8.563
2 Vectorised function 100000 1.210 1.000

Loops are almost never the
right answer.

• Use vectorised functions.
• Use functional programming (see Session 4).

It is extremely rare that you need to loop over
rows in your data.

Example:
1. Calculating a mean.
2. Updating a column.

Control flow

Control flow

1. if / else statements
If condition is TRUE , then perform an action.

2. while
Perform an action while the condition remains TRUE .

3. repeat
Repeat an action forever.

We’re only going to look at if / else .

if / else

if (CONDITION is TRUE) {
DO SOMETHING

} else {
DO SOMETHING ELSE

}

if (format(Sys.time(), "%H") < 12) {
print("Good morning")

} else {
print("Good afternoon")

}

if / else

if (CONDITION is TRUE) {
DO SOMETHING

} else {
DO SOMETHING ELSE

}

if (format(Sys.time(), "%H") < 12) {
print("Good morning")

} else {
print("Good afternoon")

}

if (score >= 50) {
grade <- "pass"

} else {
grade <- "fail"

}

We can have multiple conditions:

if (score >= 70) {
grade <- "A"

} else if (score >= 60) {
grade <- "B"

} else if (score >= 50) {
grade <- "C"

} else {
grade <- "fail"

}

if (score >= 50) {
grade <- "pass"

} else {
grade <- "fail"

}

We can have multiple conditions:

if (score >= 70) {
grade <- "A"

} else if (score >= 60) {
grade <- "B"

} else if (score >= 50) {
grade <- "C"

} else {
grade <- "fail"

}

But don’t overuse this — it quickly becomes unreadable.

We’ll introduce case_when and case_match in a later
session. These are a better option if you have multiple
conditions to evaluate.

For example:

case_when(
score >= 70 ~ "A",
score >= 60 ~ "B",
score >= 50 ~ "C",
.default ~ "Fail"

)

A common use case: Input validation
It is good practice when writing functions to verify that
the inputs are correct. For example:

• Required inputs are not missing.
• Inputs are of the correct type (e.g., numeric,
character).

Embedding this logic into your functions can help catch
errors early.

calculate_bmi <- function(weight, height) {
if (!is.na(weight) | !is.na(height) {
stop("Inputs must be numeric")

}
weight / (height^2)

}

	Iteration

