Functions and control flow

Outline

1. Functionsin R

® What is a function?
* How to use functions
® Writing your own functions

2. Iteration
3. Control flow

[50 minutes]

Functions in R

Functions

A function takes inputs, does something with them, and
returns the result.

Arguments Function Result

Functions

A function takes inputs, does something with them, and
returns the result.

Arguments Function Result

Many functions come with R or are added via packages
(e.g., min, mean, head).

But the ability to write your own functions
is very powerful.

add_one <- function(x) 3
return(x + 1)

§

add_one(2)
[1] 3

multiply <- function(x, y) %
return(x * y)

§

multiply (2, 3)
[1] 6

“A good rule of thumb is to consider
writing a function whenever you've
copied and pasted a block of code more
than twice (i.e. you now have three
copies of the same code).”

Hadley Wickham, R for Data Science (2e) (2023).

Things you should know about functions

1. Functions are objects.

my_exciting_function <- function(x, y) %

§

Things you should know about functions

2. We call a function by typing its name followed by
parentheses.

my_exciting_function()

What happens if we omit ()?
my_exciting_function

Things you should know about functions

3. Arguments can be named or positional.

These are equivalent:
rnorm(100, mean = 0, sd = 1)

rnorm(100, 0, 1)

Things you should know about functions

4. Arguments can have defaults.

my_function <- function(x = 1,

y = TRUE) %
§
rnorm()

See help (e.g. ?rnorm) to learn about default arguments.

Things you should know about functions

5. We can use return within our function to return a
result. (But we don’t have to).

my_exciting_function <- function(x, y) 1
return(x * y)

§

my_exciting_function <- function(x, y) %
X * Y
£

What's the difference between these three functions?

f1 <- function(x, y) %
return(x * y)

$

f2 <- function(x, y) %
print(x * y)
t

3 <- function(x, y) %
cat(x * vy)
$

Example 1

Rolling a dice

roll dice <- function() f{
sample(l:6, 1)
§

roll dice()

Example 2

Calculating BMI

calculate_bmi <- function(weight, height) 1%
weight / (height”2)
%

i Example: 70kg and 1.75m
calculate bmi(70, 1.75)

Example 3

A function to format the
coefficients from a regression model

p <- function(x) { sprintf("%.1f", x) %

format_coef <- function(est, lo, hi) %
str_glue("ip(est)§ [ip(lo)}, ip(hi)F]")
%

format_coef(1.4188, 1.2103, 1.6120)
1.4 [1.2, 1.6]

Example 4

A function to import Qualitrics extracts (x . x1sXx):

import_qualtrics <- function(path) §
metadata <- readxl::read_xlsx(path,

n_max = 2,
col _names = FALSE,
.name_repair = "minimal"

)
d_name <- metadatall,] |>
as.character() |>
janitor: :make_clean_names ()
d _label <- metadata[2,] |> as.character()
data <- readxl::read_xlsx(path, skip = 2,
col_names = d_name)
labelled: :var_label(data) <- setNames(d_label,
d_name)
return(data)

Iteration

Iteration

Computers are good at repeating things

Like any programming language, R provides
many tools for iteration.

We'll look at two today:

1. Loops
2. Vectorised functions

In Session 4, we'll extend this to explore the
functional programming tools in R — another
approach to iteration.

Loops

Iterate through a sequence of things, and do some
operation at each iteration.

For example, we might loop through a numeric vector and
perform some calculation on each element.

VYV
4191933

Loops

In R, we use the for statement:

for (THING in SEQUENCE) 1}
DO SOMETHING

§

Loops

In R, we use the for statement:

for (THING in SEQUENCE) 1}
DO SOMETHING

§

For example:

for (1in1:10) 3
print (i)
%

> for (i in 1:10) 3%

+ print(i)

+ § i refers to the current
[1] element of the sequence.

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

You don’t have to use 1i:

for (thing in 1:10) {
print(thing)
5

PO oONOoccoh,WwWNPRE

Loop over elements of a vector
months <- c("January", "February", "March")
for (i in months) {
print (i)
£

Nested loops
for (i in 1:10) 1§
for (j in seq(5, 25, 5)) 1
print(i * 7J)
§

Using loops to update a list or vector

e.g., iterate through a sequence, perform a calculation, and
store the result in a new vector.

Define an empty vector to store results
results <- vector(mode = "numeric",
length = 10)

>
>

> for (i in 1:10) 3%
> results[i] <- sqrt(i)
>

§

results

[1] 1.000000 1.414214 1.732051
[4] 2.000000 2.236068 2.449490
[7] 2.645751 2.828427 3.000000
[10] 3.162278

A\

‘Vectorised’ functions

¢ Many functions in R are vectorised.

¢ This means they operate on all elements of a vector
without the need for looping.

For example, mean() or min() :

> x <- c¢(8, 1, 12, 5, 21, 4)
> mean(x)

[1] 8.5

> min(x)
[1] 1

Use vectorised functions wherever possible.

> library(rbenchmark)

> x <- sample(1:100, le4d, replace = TRUE)
> head(x)

[1] 79 4 13 25 16 30

> my_mean <- function(x) {

> total <- 0O

> for (i in x) {

> total <- total + i

> %

> return(total / length(x))

>}

> benchmark("My function" = § my_mean(x) }%,

> "Vectorised function" = §{ mean(x) %,
> replications = 1e5)

test replications elapsed relative
1 My function 100000 10.361 8.563
2 Vectorised function 100000 1.210 1.000

Loops are almost never the
right answer.

e Use vectorised functions.
e Use functional programming (see Session 4).

It is extremely rare that you need to loop over
rows in your data.

Example:
1. Calculating a mean.
2. Updating a column.

Control flow

Control flow

1. if/else statements

If condition is TRUE , then perform an action.

2. while

Perform an action while the condition remains TRUE .

3. repeat

Repeat an action forever.

We're only going to look at if / else.

1f / else

if (CONDITION is TRUE) 3
DO SOMETHING

t else 3
DO SOMETHING ELSE

§

1f / else

if (CONDITION is TRUE) 3
DO SOMETHING

t else 3
DO SOMETHING ELSE

§

if (format(Sys.time(), "%H") < 12) {
print("Good morning")

t else %
print("Good afternoon")

§

if (score >= 50) 3
grade <- "pass"
t else %
grade <- "fail"

§

if (score >= 50) 3
grade <- "pass"
t else %
grade <- "fail"

§

We can have multiple conditions:

if (score >= 70) 3

grade <- "A"

t else if (score >= 60) 1%
grade <- "B"

t else if (score >= 50) 1%
grade <- "C"

t else %

grade <- "fail"

§

But don't overuse this — it quickly becomes unreadable.

We'll introduce case_when and case_match inalater
session. These are a better option if you have multiple
conditions to evaluate.

For example:

case_when(
score >= 70 ~ "A",
score >= 60 ~ "B",
score >= 50 ~ "C",
.default ~ "Fail"

A common use case: Input validation

It is good practice when writing functions to verify that
the inputs are correct. For example:

e Required inputs are not missing.

¢ Inputs are of the correct type (e.g., numeric,
character).

Embedding this logic into your functions can help catch
errors early.

calculate_bmi <- function(weight, height) 1
if (!is.na(weight) | !is.na(height) %
stop("Inputs must be numeric")
$
weight / (height”2)
§

	Iteration

