

Data manipulation in R

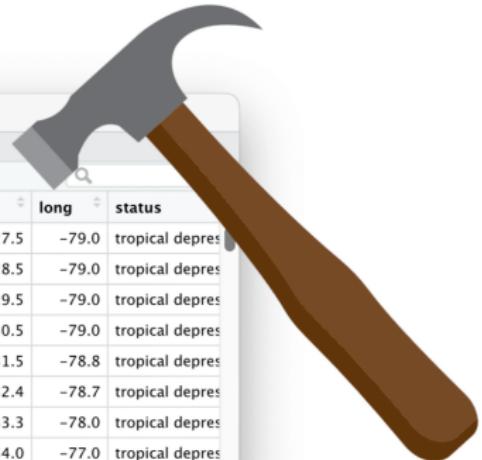
RStudio Source Editor

storms

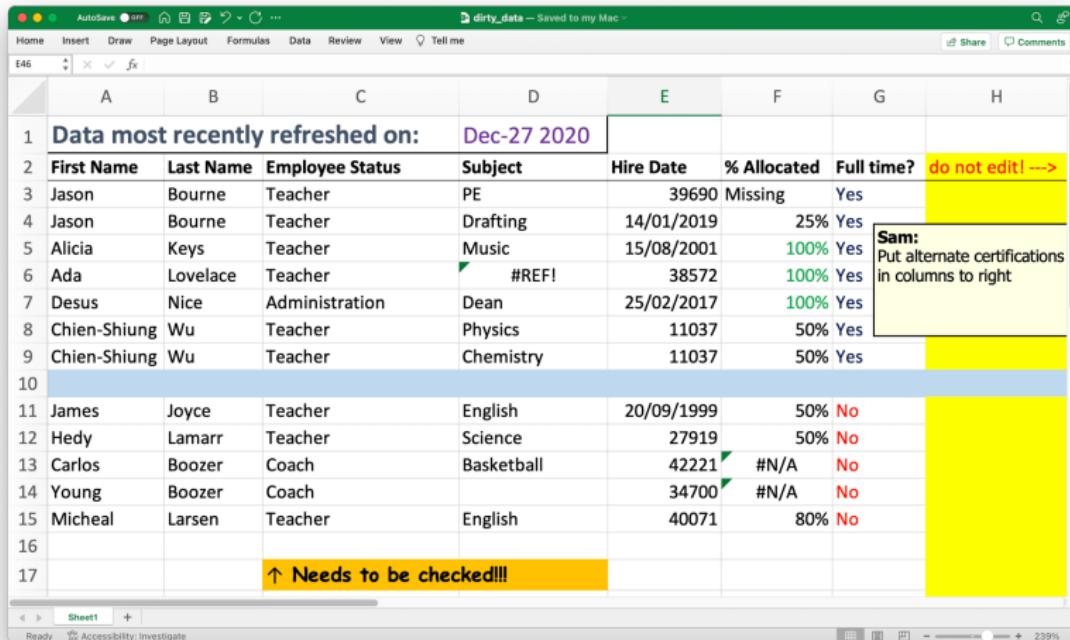
Filter

	name	year	month	day	hour	lat	long	status
1	Amy	1975	6	27	0	27.5	-79.0	tropical depress
2	Amy	1975	6	27	6	28.5	-79.0	tropical depress
3	Amy	1975	6	27	12	29.5	-79.0	tropical depress
4	Amy	1975	6	27	18	30.5	-79.0	tropical depress
5	Amy	1975	6	28	0	31.5	-78.8	tropical depress
6	Amy	1975	6	28	6	32.4	-78.7	tropical depress
7	Amy	1975	6	28	12	33.3	-78.0	tropical depress
8	Amy	1975	6	28	18	34.0	-77.0	tropical depress
9	Amy	1975	6	29	0	34.4	-75.8	tropical storm
10	Amy	1975	6	29	6	34.0	-74.8	tropical storm
11	Amy	1975	6	29	12	33.8	-73.8	tropical storm
			6	29	18	33.8	-72.8	tropical storm
			6	30	0	34.3	-71.6	tropical storm
			6	30	6	35.6	-70.8	tropical storm
			6	30	12	35.9	-70.5	tropical storm
16	Amy	1975	6	30	18	36.2	-70.2	tropical storm

Showing 1 to 16 of 11,859 entries, 13 total columns



You will spend most of your time cleaning data.



dirty_data -- Saved to my Mac -							
	A	B	C	D	E	F	G
1	Data most recently refreshed on:			Dec-27 2020			
2	First Name	Last Name	Employee Status	Subject	Hire Date	% Allocated	Full time?
3	Jason	Bourne	Teacher	PE	39690	Missing	Yes
4	Jason	Bourne	Teacher	Drafting	14/01/2019	25%	Yes
5	Alicia	Keys	Teacher	Music	15/08/2001	100%	Yes
6	Ada	Lovelace	Teacher	#REF!	38572	100%	Yes
7	Desus	Nice	Administration	Dean	25/02/2017	100%	Yes
8	Chien-Shiung	Wu	Teacher	Physics	11037	50%	Yes
9	Chien-Shiung	Wu	Teacher	Chemistry	11037	50%	Yes
10							
11	James	Joyce	Teacher	English	20/09/1999	50%	No
12	Hedy	Lamarr	Teacher	Science	27919	50%	No
13	Carlos	Boozer	Coach	Basketball	42221	#N/A	No
14	Young	Boozer	Coach		34700	#N/A	No
15	Micheal	Larsen	Teacher	English	40071	80%	No
16							
17	↑ Needs to be checked!!!						

Session overview

1. Alternative packages
2. Pipes
3. Essential data manipulation tasks
 - a) **Select** columns or rows
 - b) **Sorting** a dataset
 - c) **Creating** or modifying columns
 - d) **Combining** datasets
 - e) **Reshaping** a dataset
 - f) **Grouping** and **summarising** data

There are many approaches to data manipulation in R.

Base R

tidyverse

data.table

- Use the right tool for the job.
- Use whatever feels most comfortable and productive.

What do I use?

The tidyverse

“an **opinionated** collection of R packages designed for data science. All packages share an **underlying philosophy** and common APIs”.

www.tidyverse.org

Core:

For specific data types:

For import/export:

You don't need to learn all these packages.

Just use what you need.

(Use the "Reference" help pages).

This session uses functions from `dplyr` and `tidyverse`.

I can never remember which functions come from
which package.

It's fine.

<https://rdatatable.gitlab.io/data.table/>

data.table

data.table provides a high-performance version of `base R`'s `data.frame` with syntax and feature enhancements for ease of use, convenience and programming speed.

Why data.table?

- concise syntax: fast to type, fast to read
- fast speed
- memory efficient
- careful API lifecycle management
- community
- feature rich

Features

- fast and friendly delimited `file reader`: `?fread`, see also [convenience features for small data](#)
- fast and feature rich delimited `file writer`: `?fwrite`
- low-level `parallelism`: many common operations are internally parallelized to use multiple CPU threads
- fast and scalable aggregations; e.g. 100GB in RAM (see [benchmarks](#) on up to [two billion rows](#))
- fast and feature rich joins: `ordered joins` (e.g. rolling forwards, backwards, nearest and limited staleness), `overlapping range joins` (similar to `IRanges:::findOverlaps`), `non-equi joins` (i.e. joins using operators `>`, `>=`, `<`, `<=`), `aggregate on join` (`by=.EACHI`), `update on join`
- fast add/update/delete columns by reference by group using no copies at all

Links

[View on CRAN](#)
[Browse source code](#)
[Report a bug](#)
[CRAN-like website](#)

License

[MPL-2.0](#) | file [LICENSE](#)

Community

[Contributing guide](#)

Citation

[Citing data.table](#)

Developers

Matt Dowle
Author, maintainer
Arun Srinivasan
Author
[More about authors...](#)

Dev status

See [this page](#) for a comparison of `dplyr` and `data.table`

See also: [dtplyr](#)

Pipes

We can use |> to chain commands together

R code is traditionally written as a series of statements.

```
df <- read_dta("stata_dataset.dta")
df <- df[df$age > 18]
df$log_income <- log(df$income)
df$female <- data$gender == "Female"
```

We can use |> to chain commands together

R code is traditionally written as a series of statements.

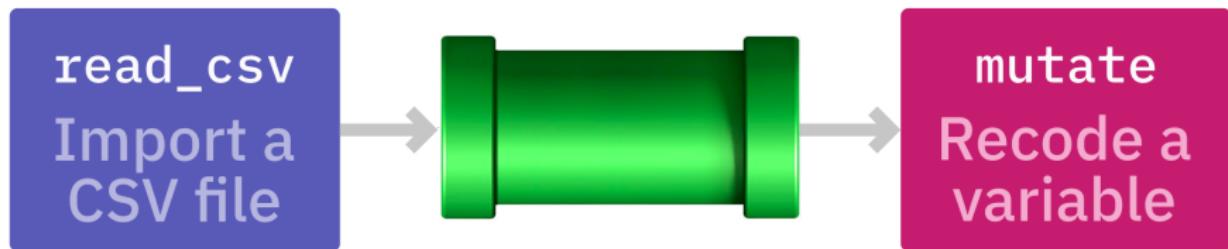
```
df <- read_dta("stata_dataset.dta")
df <- df[df$age > 18]
df$log_income <- log(df$income)
df$female <- data$gender == "Female"
```

The pipe allows us to chain together several statements.

```
df <- read_dta("stata_dataset.dta") |>
  filter(age > 18) |>
  mutate(log_income = log(income),
        female = gender == "Female")
```

How does it work?

A pipe takes **output** from one command and uses it as **input** to the next.



They are written as `| >` at the end of a line.

You need to save the output by **assigning** to an object.

```
clean_data <- messy_data |>  
  mutate(...) |>  
  pivot_wider(...)
```

Session overview

1. Alternative packages
2. Pipes
3. Essential data manipulation tasks

Essential data manipulation tasks

- a) **Select** columns or rows
- b) **Sorting** a dataset
- c) **Creating** or modifying columns
- d) **Combining** datasets
- e) **Reshaping** a dataset
- f) **Grouping** and **summarising** data

Let's load some data...

```
> library(tidyverse) # Load the tidyverse package
> data(starwars)      # Load a built-in dataset
> head(starwars)

# A tibble: 6 x 13
  name   height   mass   hair_color   skin_color   eye_color   birth
  <chr>   <int>   <dbl>   <chr>       <chr>       <chr>       <chr>
1 Luke Skywalker     172      77   blond       fair
2 C-3PO              167      75   <NA>        gold
3 R2-D2              96       32   <NA>       white, blue
4 Darth Vader        202     136   none        white
5 Leia Organa         150      49   brown       light
6 Owen Lars          178     120   brown, grey  light
# ... with 4 more variables: species <chr>, films <list>
```

- Get a list of the **variables** in this data frame.
- How many **rows** and **columns** are there?

a) Selecting rows and columns

We've already seen how **subsetting** can be used to select parts of objects.

For example, we can select rows and columns by number:

```
starwars[1:5, ]  
starwars[, c(1, 3, 8)]
```

Or by name:

```
starwars$height  
starwars[, c("birth_year", "homeworld")]
```

Select and drop columns with `select`

```
starwars |>  
  select(birth_year, homeworld)
```

```
# Negate to remove a column
```

```
starwars |>  
  select(-eye_color)
```

```
# Select several columns
```

```
starwars |>  
  select(starts_with("h") ,  
         ends_with("color") ,  
         matches("or$"))
```

You can rename at the same time.

```
starwars |>  
  select(new_name = old_name)
```

To rename without dropping other variables, use `rename`:

```
starwars |>  
  rename(new_name = old_name)
```

Select rows with `filter`

`filter` selects rows based on a condition.

For example, select all rows where mass is above 100:

```
starwars |>  
  filter(mass > 100)
```

Separate multiple conditions with a comma:

```
starwars |>  
  filter(mass > 100,  
         eye_color == "yellow",  
         homeworld == "Tatooine")
```

b) Sorting a dataset with `arrange`

```
starwars |>  
  arrange(height)
```

```
# Sorting on multiple columns  
starwars |>  
  arrange(height, mass)
```

```
# Sort in descending order  
starwars |>  
  arrange(desc(height))
```

Practical: pipes, select, filter, and arrange

From the `starwars` data frame:

1. Select the columns `height`, `mass`, `gender`, and `species`.
2. Filter to select rows with `height` less than 191 and with `species` equal to “Human”.
3. Sort the result by `height`.

Use `pipes` to combine each operation; store the result as a new data frame.

c) Create or modify variables with `mutate`

In base R, we can create new columns using the assignment operator:

```
df$eligible <- TRUE  
df$log_income <- log(df$income)  
df$female <- df$sex == "Female"
```

We can transform existing variables using `subsetting`:

Replace "Not applicable" with `NA`.

```
df$wstat[df$wstat == "Not applicable"] <- NA
```

Create binary measure of age:

```
df$older <- 0  
df$older[df$age > 50] <- 1
```

But `mutate` makes this easier.

```
df <- df |>  
  mutate(eligible = TRUE,  
         log_income = log(income),  
         female = sex == "Female")
```

But `mutate` makes this easier.

```
df <- df |>  
  mutate(eligible = TRUE,  
         log_income = log(income),  
         female = sex == "Female")
```

Things to note:

- We're not using subsetting or quoting.
- We can include multiple statements inside a single `mutate` function.
- We can use earlier computations in later ones.
- We need to store the result.

Practical: Creating and modifying columns

1. Load the `tidyverse` package and the `mtcars` dataset.
2. Add a new column indicating whether a car weighs over 3000 lbs (i.e. `wt > 3`).
 - i. Using subsetting
 - ii. Using `mutate`
3. Tabulate this new column against the number of cylinders (`cyl`).

Practical: Creating and modifying columns

2. i. Using subsetting

```
mtcars$heavy <- mtcars$wt > 3
```

ii. Using `mutate`

```
mtcars <- mtcars |>  
  mutate(heavy = wt > 3)
```

3. `table(mtcars$heavy, mtcars$cyl)`

d) Combining datasets

Appending two data frames

id	age	height	id	age	height
001	45	1.87	001	45	1.87
002	33	1.43	002	33	1.43
003	63	1.68	003	63	1.68

d) Combining datasets

Appending two data frames

id	age	height	id	age	height
001	45	1.87	001	45	1.87
002	33	1.43	002	33	1.43
003	63	1.68	003	63	1.68

Merging or 'joining' two data frames

id	age	id	height	id	age	height
001	45	002	1.87	001	45	1.43
002	33	001	1.43	002	33	1.87
003	63	003	1.68	003	63	1.68

Append with bind_rows and bind_cols

```
# 1. Select some columns
a <- starwars[, 2:4]
b <- starwars[, 9]
```

Append with `bind_rows` and `bind_cols`

```
# 1. Select some columns
a <- starwars[, 2:4]
# a
# b
height  mass    hair_color  homeworld
<int> <dbl>      <chr>      <chr>
1    172    77      blond      Tatooine
2    167    75      <NA>       Tatooine
3     96    32      <NA>       Naboo
4    202   136      none       Tatooine
5    150    49      brown      Alderaan
6    178   120  brown, grey  Tatooine
7    165    75      brown      Tatooine
8     97    32      <NA>       Tatooine
# ... with 79 more rows
# ... with 79 more rows
```

```
# Bind them together
bind_cols(a, b)
```

```
# A tibble: 87 x 4
```

	height	mass	hair_color	homeworld
	<int>	<dbl>	<chr>	<chr>
1	172	77	blond	Tatooine
2	167	75	<NA>	Tatooine
3	96	32	<NA>	Naboo
4	202	136	none	Tatooine
5	150	49	brown	Alderaan
6	178	120	brown, grey	Tatooine
7	165	75	brown	Tatooine
8	97	32	<NA>	Tatooine
9	183	84	black	Tatooine
10	182	77	auburn, white	Stewjon
# ... with 77 more rows				

```
# For rows...
```

```
a <- starwars[1:5, ]
```

```
b <- starwars[20:30, ]
```

```
bind_rows(a, b)
```

```
# For rows...
a <- starwars[1:5, ]
b <- starwars[20:30, ]
bind_rows(a, b)
```

These commands are replacements the `cbind` and `rbind` from base R.

Merging with *_join

- We `merge` to combine variables held in separate datasets based on one or more `common keys`.

Merging with *_join

- We `merge` to combine variables held in separate datasets based on one or more `common keys`.
- These operations are referred to as `joins`.

Merging with *_join

- We `merge` to combine variables held in separate datasets based on one or more `common keys`.
- These operations are referred to as `joins`.

x		y	
1	x1	1	y1
2	x2	2	y2
3	x3	4	y3

Merging with *_join

- We `merge` to combine variables held in separate datasets based on one or more `common keys`.
- These operations are referred to as `joins`.

x		y	
1	x1	1	y1
2	x2	2	y2
3	x3	4	y3

- A join is a way of connecting each row in `x` to zero, one, or more rows in `y`.

Merging with *_join

- We `merge` to combine variables held in separate datasets based on one or more `common keys`.
- These operations are referred to as `joins`.

	x	y
1	x1	y1
2	x2	y2
3	x3	y3

- A join is a way of connecting each row in `x` to zero, one, or more rows in `y`.
- The type of join we need depends on how many keys from `x` are also found in `y`.

We're going to focus on four types of join:

`inner_join` matches pairs of observations whenever their keys are equal.

`left_join` keeps all observations in `x`.

`right_join` keeps all observations in `y`.

`full_join` keeps all observations in `x` and `y`.

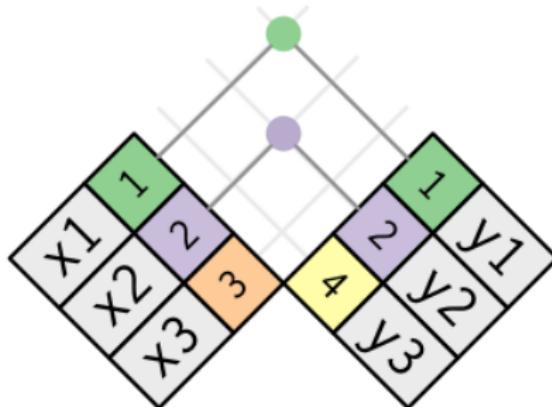
We're going to focus on four types of join:

`inner_join` matches pairs of observations whenever their keys are equal.

`left_join` keeps all observations in `x`.

`right_join` keeps all observations in `y`.

`full_join` keeps all observations in `x` and `y`.



key	val_x	val_y
1	x1	y1
2	x2	y2

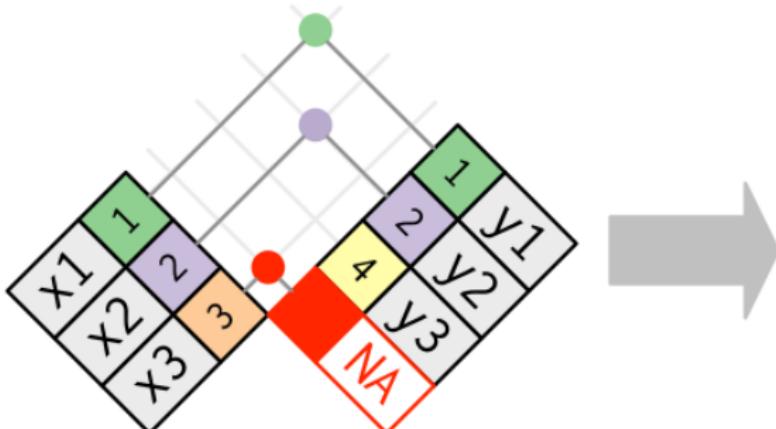
We're going to focus on four types of join:

`inner_join` matches pairs of observations whenever their keys are equal.

`left_join` keeps all observations in `x`.

`right_join` keeps all observations in `y`.

`full_join` keeps all observations in `x` and `y`.



key	val_x	val_y
1	x1	y1
2	x2	y2
3	x3	NA

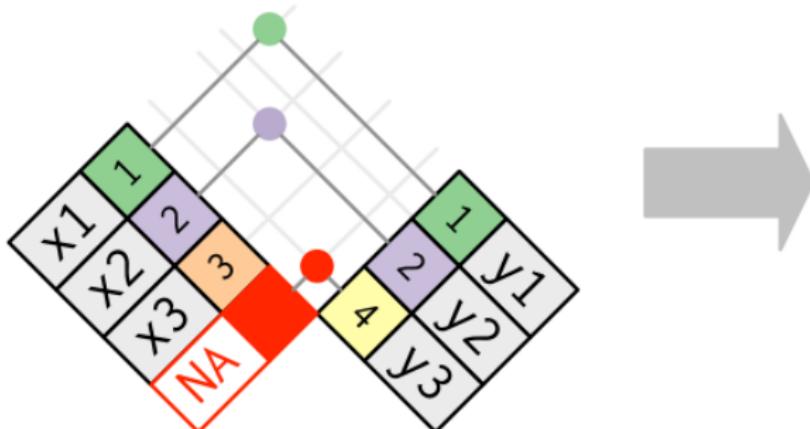
We're going to focus on four types of join:

`inner_join` matches pairs of observations whenever their keys are equal.

`left_join` keeps all observations in `x`.

`right_join` keeps all observations in `y`.

`full_join` keeps all observations in `x` and `y`.



key	val_x	val_y
1	x1	y1
2	x2	y2
4	NA	y3

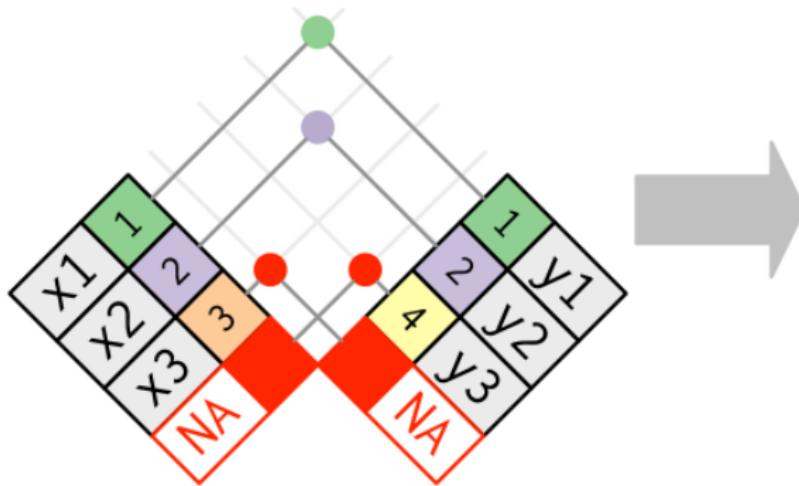
We're going to focus on four types of join:

`inner_join` matches pairs of observations whenever their keys are equal.

`left_join` keeps all observations in `x`.

`right_join` keeps all observations in `y`.

`full_join` keeps all observations in `x` and `y`.



key	val_x	val_y
1	x1	y1
2	x2	y2
3	x3	NA
4	NA	y3

- By default, data frames are joined based on [variables that appear in both tables](#).
- Unlike other packages, you don't always need to specify the joining key.

If in doubt, I try `full_join` first and drop matches that aren't needed.

- By default, data frames are joined based on **variables that appear in both tables**.
- Unlike other packages, you don't always need to specify the joining key.

If in doubt, I try `full_join` first and drop matches that aren't needed.

`band_members`

	name	band
	Mick	Stones
	John	Beatles
	Paul	Beatles

`band_instruments`

	name	plays
	John	guitar
	Paul	bass
	Keith	guitar

```
#<br># inner_join<br>band_members |> inner_join(band_instruments)
```

```
# inner_join  
band_members |> inner_join(band_instruments)  
# left_join  
band_members |> left_join(band_instruments)
```

```
# inner_join
band_members |> inner_join(band_instruments)
# left_join
band_members |> left_join(band_instruments)
# right_join
band_members |> right_join(band_instruments)
```

```
# inner_join
band_members |> inner_join(band_instruments)
# left_join
band_members |> left_join(band_instruments)
# right_join
band_members |> right_join(band_instruments)
# full_join
band_members |> full_join(band_instruments)
```

Tidy data

What is tidy data?

"All happy families resemble one another; every unhappy family is unhappy in its own way."

Leo Tolstoy (1878)

"Tidy datasets are all alike, but every messy dataset is messy in its own way."

Hadley Wickham (2014)

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II. <http://www.jstatsoft.org/>

Tidy Data

Hadley Wickham
RStudio

Abstract

A large amount of effort is spent cleaning data so to get it ready for analysis, but there has been little research on how to make this process as painless and efficient as possible. This paper tackles a small, but important, component of data cleaning: data tilting. Tidy datasets are easy to manipulate, model and visualize, and have a specific structure: each variable is a column, each observation is a row, and each type of data is represented as a table. This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easy to write general purpose data analysis tools that can read and output tidy datasets. The advantages of a consistent data structure and matching tools are demonstrated with a case study free from mundane data manipulation details.

Keywords: data cleaning, data tilting, relational databases, R.

1. Introduction

It is often said that 80% of data analysis is spent on the process of cleaning and preparing the data (Usoro and Johnson 2012). Data preparation is not just a first step, but must be repeated many over the course of analysis as new problems come to light or new data is collected. Despite the amount of time it takes, there has been surprisingly little research on how to clean data. One of the challenges is the lack of standardization: it is not always clear exactly how to clean particular data to make it most appropriate. To get a handle on the problem, this paper focuses on a small, but important, aspect of data cleaning that I call data tilting: structuring datasets to facilitate analysis.

The principles of tidy data provide a standard way to organize data values within a dataset. A standard way to store data means that tools can't need to start from scratch and reinvent the wheel every time. The tidy data standard has been designed to facilitate initial exploration and analysis of the data, and to simplify the development of data analysis tools that work well together. Current tools often require translation. You have to spend time

Journal of Statistical Software, 59(10), 1–23.
<https://doi.org/10.18637/jss.v059.i10>

1. Each **variable** forms a **column**.
2. Each **observation** forms a **row**.
3. Each **type of observational unit** forms a **table**.

country	year	cases	population
Afghanistan	2000	3166	2095360
Brazil	1999	31737	17206362
Brazil	2000	80488	17404898
China	1999	21258	127215272
China	2000	21666	128022583

Variables

country	year	cases	population
Afghanistan	2000	3166	2095360
Afghanistan	2000	3166	2095360
Brazil	1999	31737	17206362
Brazil	2000	80488	17404898
China	1999	21258	127215272
China	2000	21666	128022583

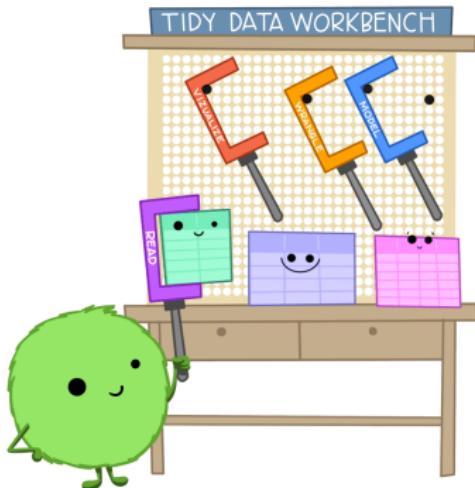
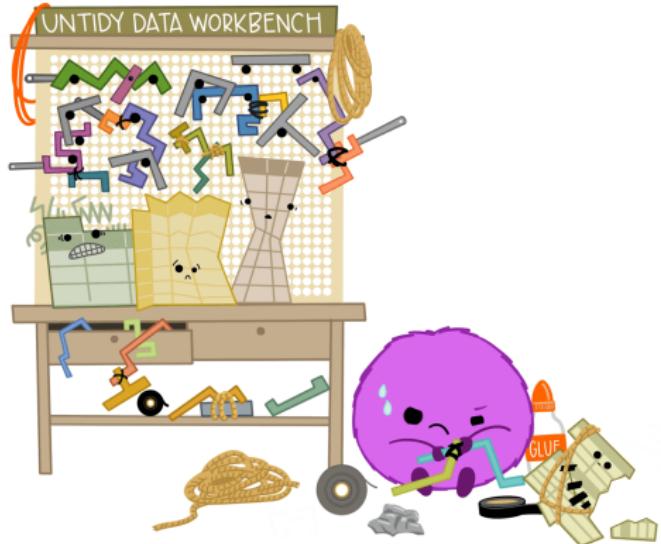
Observations

country	year	cases	population
Afghanistan	2000	3166	2095360
Afghanistan	2000	3166	2095360
Brazil	1999	31737	17206362
Brazil	2000	80488	17404898
China	1999	21258	127215272
China	2000	21666	128022583

Values

When working with tidy data, we can use the **same tools** in **similar ways** for different datasets...

...but working with untidy data often means reinventing the wheel with **one-time approaches** that are **hard to iterate or reuse**.



Illustrations adapted from the Openscapes blog *Tidy Data for reproducibility, efficiency, and collaboration* by Julia Lowndes and Allison Horst.

- a) Select columns or rows
- b) Sorting a dataset
- c) Creating or modifying columns
- d) Combining datasets
- e) **Reshaping** a dataset
- f) **Grouping** and **summarising** data

e) From WIDE to LONG with pivot longer

> relig_income

```
# A tibble: 18 x 11
  religion `<$10k` `'$10-20k` `'$20-30k` `'$30-40k` `'$40-50k` `'$50-75k`  
  <chr>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>  
1 Agnostic     27       34       60       81       76      137  
2 Atheist       12       27       37       52       35       70  
3 Buddhist      27       21       30       34       33       58  
4 Catholic      418      617      732      670      638     1116  
5 Don't know    15       14       15       11       10       35  
6 Evangel...    575      869     1064      982      881     1486  
7 Hindu          1        9        7        9        11       34  
8 Histori...    228      244      236      238      197     223  
9 Jehovah        20       27       24       24       21       30  
10 Jewish         19       19       25       25       30       95  
11 Mainlin      289      495      619      655      651     1107  
12 Mormon        29       40       48       51       56       112  
13 Muslim          6        7        9        10       9        23  
14 Orthodox       13       17       23       32       32       47  
15 Other C...     9        7        11       13       13       14  
16 Other F...    20       33       40       46       49       63  
17 Other W...     5        2        3        4        2        7  
18 Unaffil...   217      299      374      365      341      528  
# ...with 4 more variables: `'$75-100k` <dbl>, `'$100-150k` <dbl>,  
# >150k` <dbl>, `Don't know/refused` <dbl>
```

From WIDE to LONG with `pivot_longer`

```
pivot_longer(data,  
             cols,  
             names_to = "name",  
             values_to = "value")
```

Columns to reshape

Name for new label column

Name of new values column

```
> relig_income
```

```
# A tibble: 18 x 11
```

	religion	`<\$10k`	`\$10-20k`	`\$20-30k`	`\$30-40k`	`\$40-50k`	`\$50-75k`	
		<chr>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	
1	Agnostic	27	34	60	81	76	137	
2	Atheist	12	27	37	52	35	70	
3	Buddhist	27	21	30	34	33	58	
4	Catholic	418	617	732	670	638	1116	
5	Don't know	15	14	15	11	10	35	
6	Evangel...	575	869	1064	982	881	1486	
7	Hindu	1	9	7	9	11	34	
8	Histori...	228	244	236	238	197	223	
9	Jehovah	20	27	24	24	21	30	
10	Jewish	19	19	25	25	30	95	
11	Mainlin	289	495	619	655	651	1107	
12	Mormon	29	40	48	51	56	112	
13	Muslim	6	7	9	10	9	23	
14	Orthodox	13	17	23	32	32	47	
15	Other C...	9	7	11	13	13	14	
16	Other F...	20	33	40	46	49	63	
17	Other W...	5	2	3	4	2	7	
18	Unaffil...	217	299	374	365	341	528	

```
# ...with 4 more variables: `'$75-100k` <dbl>, `'$100-150k` <dbl>,
```

```
# >150k` <dbl>, `Don't know/refused` <dbl>
```

```
relig_income |>  
  pivot_longer(cols = -religion,  
               names_to = "income",  
               values_to = "count")
```

A tibble: 180 x 3

	religion	income	count
1	Agnostic	<\$10k	27
2	Agnostic	\$10-20k	34
3	Agnostic	\$20-30k	60
4	Agnostic	\$30-40k	81
5	Agnostic	\$40-50k	76
6	Agnostic	\$50-75k	137
7	Agnostic	\$75-100k	122
8	Agnostic	\$100-150k	109
9	Agnostic	>150k	84
10	Agnostic	Don't know/refused	96
11	Atheist	<\$10k	12
12	Atheist	\$10-20k	27
13	Atheist	\$20-30k	37
14	Atheist	\$30-40k	52
15	Atheist	\$40-50k	35
16	Atheist	\$50-75k	70

Another example...

> billboard

artist	track	date.entered	wk1	wk2	wk3	wk4	wk
2 Pac	Baby Don't Cry (Keep...	2000-02-26	87	82	72	77	8
2Ge+her	The Hardest Part Of ...	2000-09-02	91	87	92	NA	NA
3 Doors Down	Kryptonite	2000-04-08	81	70	68	67	6
3 Doors Down	Loser	2000-10-21	76	76	72	69	6
504 Boyz	Wobble Wobble	2000-04-15	57	34	25	17	1
98^0	Give Me Just One Nig...	2000-08-19	51	39	34	26	2
A*Teens	Dancing Queen	2000-07-08	97	97	96	95	10
Aaliyah	I Don't Wanna	2000-01-29	84	62	51	41	3
Aaliyah	Try Again	2000-03-18	59	53	38	28	2
Adams, Yolanda	Open My Heart	2000-08-26	76	76	74	69	6
Adkins, Trace	More	2000-04-29	84	84	75	73	7
Alice Deejay	Better Off Alone	2000-04-08	79	65	53	48	4
Allan, Gary	Smoke Rings In The D...	2000-01-22	80	78	76	77	9
Amber	Sexual	1999-07-17	99	99	96	96	10
Anastacia	I'm Outta Love	2000-04-01	92	NA	NA	95	NA
Anthony, Marc	My Baby You	2000-09-16	82	76	76	70	8
Anthony, Marc	You Sang To Me	2000-02-26	77	54	50	43	3
Avant	My First Love	2000-11-04	70	62	56	43	3
Avant	Separated	2000-04-29	62	32	30	23	2
BBMak	Back Here	2000-04-29	99	86	60	52	3
Badu, Erykah	Bag Lady	2000-08-19	67	53	42	41	4
Baha Men	Who Let The Dogs Out	2000-07-22	99	92	85	76	6

```
> billboard |>
>   pivot_longer(starts_with("wk"),
>                 names_to = "week",
>                 values_to = "chart_position")
# A tibble: 24,092 × 5
  artist   track                               date.entered week  chart_position
  <chr>   <chr>                               <date>      <chr>
1 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk1
2 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk2
3 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk3
4 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk4
5 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk5
6 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk6
7 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk7
8 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk8
9 2 Pac   Baby Don't Cry (Keep...) 2000-02-26 wk9
10 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk10
```

```
> billboard |>
>   pivot_longer(starts_with("wk"),
>                 names_to = "week",
>                 values_to = "chart_position") |>
>   mutate(week = parse_number(week))
# A tibble: 24,092 × 5
  artist track                               date.entered week  chart_position
  <chr>  <chr>                               <date>      <chr>
1 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk1
2 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk2
3 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk3
4 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk4
5 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk5
6 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk6
7 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk7
8 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk8
9 2 Pac  Baby Don't Cry (Keep...) 2000-02-26 wk9
10 2 Pac Baby Don't Cry (Keep...) 2000-02-26 wk10
```

```
> billboard |>
>   pivot_longer(starts_with("wk"),
>                 names_to = "week",
>                 values_to = "chart_position",
>                 values_drop_na = TRUE) |>
>   mutate(week = parse_number(week))
# A tibble: 5,307 × 5
  artist   track           date.entered  week ch
  <chr>   <chr>          <date>       <dbl>
1 2 Pac   Baby Don't Cry (Keep... 2000-02-26  1
2 2 Pac   Baby Don't Cry (Keep... 2000-02-26  2
3 2 Pac   Baby Don't Cry (Keep... 2000-02-26  3
4 2 Pac   Baby Don't Cry (Keep... 2000-02-26  4
5 2 Pac   Baby Don't Cry (Keep... 2000-02-26  5
6 2 Pac   Baby Don't Cry (Keep... 2000-02-26  6
7 2 Pac   Baby Don't Cry (Keep... 2000-02-26  7
8 2Ge+her The Hardest Part Of ... 2000-09-02  1
9 2Ge+her The Hardest Part Of ... 2000-09-02  2
10 2Ge+her The Hardest Part Of ... 2000-09-02  3
```

```
> longer <- billboard |>
>   pivot_longer(starts_with("wk"),
>                 names_to = "week",
>                 values_to = "chart_position",
>                 values_drop_na = TRUE) |>
>   mutate(week = parse_number(week))
```

From LONG to WIDE with pivot_wider

```
pivot_wider(data,  
            names_from = "name",  
            values_from = "value")
```

An **existing** column
that will become the
column headings

An **existing** column
containing the values.

Suppose we already have our data in LONG format...

artist	track	date.entered	week	chart_position
2 Pac	Baby Don't	2000-02-26	1	87
2 Pac	Baby Don't	2000-02-26	2	82
2 Pac	Baby Don't	2000-02-26	3	72
2 Pac	Baby Don't	2000-02-26	4	77
2 Pac	Baby Don't	2000-02-26	5	87
2 Pac	Baby Don't	2000-02-26	6	94
2 Pac	Baby Don't	2000-02-26	7	99
2Ge+her	The Hardest	2000-09-02	1	91
2Ge+her	The Hardest	2000-09-02	2	87
2Ge+her	The Hardest	2000-09-02	3	92
3 Doors	Down Kryptonite	2000-04-08	1	81
3 Doors	Down Kryptonite	2000-04-08	2	70
3 Doors	Down Kryptonite	2000-04-08	3	68
3 Doors	Down Kryptonite	2000-04-08	4	67
3 Doors	Down Kryptonite	2000-04-08	5	66
3 Doors	Down Kryptonite	2000-04-08	6	57
3 Doors	Down Kryptonite	2000-04-08	7	54
3 Doors	Down Kryptonite	2000-04-08	8	53
3 Doors	Down Kryptonite	2000-04-08	9	51
3 Doors	Down Kryptonite	2000-04-08	10	51
3 Doors	Down Kryptonite	2000-04-08	11	51
3 Doors	Down Kryptonite	2000-04-08	12	51
3 Doors	Down Kryptonite	2000-04-08	13	47
3 Doors	Down Kryptonite	2000-04-08	14	44

```
pivot_wider(data,  
            names_from = ?,  
            values_from = ?)
```

Practical: pivoting between LONG and WIDE

1. Reshape the `fish_encounters` dataset to WIDE format, such that each column represents a different monitoring station. After reshaping, is this dataset 'tidy'? Why?
2. Reshape the `world_bank_pop` dataset to LONG format, such that it contains three columns: `country`, `indicator`, and `year`.
3. (If time) Reshape the `table2` dataset such that there is a separate column for 'cases' and 'population'.

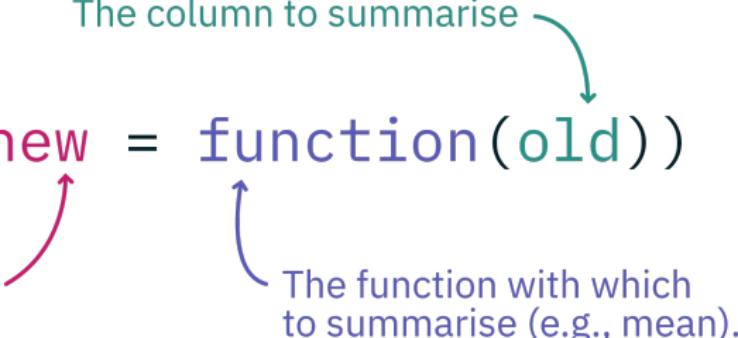
f) Grouping and summarising data

```
data |>  
  summarise(new = function(old))
```

The column to summarise

The name for a new column

The function with which to summarise (e.g., mean).



Note the differences with `mutate`

`mutate`

1 row = 1 row

`summarise`

Many rows = 1 row

For example, calculate the mean and standard deviation of a column:

```
> mtcars |>
+   summarise(mean = mean(wt) ,
+             sd = sd(wt))
      mean           sd
1 3.21725 0.9784574
```

As with mutate, we can have multiple expressions, separated by commas.

Grouping data with `group_by`

We often want to calculate summaries for subgroups in our data.

```
> # Average fuel efficiency by number
> # of cylinders?
> mtcars |>
+ group_by(cyl) |>
+ summarise(efficiency = mean(mpg))
# A tibble: 3 x 2
  cyl  efficiency
  <dbl>      <dbl>
1     4      26.66364
2     6      19.74286
3     8      15.10000
```

Note that, once you define the grouping, all subsequent operations to be grouped.

For example, `mutate`:

```
> mtcars |>  
+   group_by(cyl) |>  
+   mutate(max = max(mpg))
```

This will calculate the maximum per group.

Phew, that was a lot...

1. Alternative packages
2. Pipes
3. Essential data manipulation tasks

- a) **Select** columns or rows
- b) **Sorting** a dataset
- c) **Creating** or modifying columns
- d) **Combining** datasets
- e) **Reshaping** a dataset
- f) **Grouping** and **summarising** data

Recoding variables...

Recoding with `if_else` and `case_when`

Two functions that solve many common data cleaning tasks.

```
if_else(CONDITION,  
        VALUE IF TRUE,  
        VALUE IF FALSE)
```

A statement that returns TRUE or FALSE

The value to return if CONDITION is TRUE

The value to return if CONDITION is FALSE.

```
> starwars |>
+   mutate(weight = if_else(mass > 80,
+                           "Heavy",
+                           "Not heavy")) |>
+   select(mass, weight)
# A tibble: 87 × 2
  mass    weight
  <dbl> <chr>
1  77  Not heavy
2  75  Not heavy
3  32  Not heavy
4 136  Heavy
5  49  Not heavy
6 120  Heavy
7  75  Not heavy
8  32  Not heavy
9  84  Heavy
10 77  Not heavy
```

However, if you're creating a binary indicator (TRUE/FALSE), there's a simpler option:

```
> starwars |>
>   mutate(heavy = mass > 80) |>
>   select(mass, heavy)
# A tibble: 87 x 2
  mass    heavy
  <dbl>   <lgl>
1     77 FALSE
2     75 FALSE
3     32 FALSE
4    136 TRUE
5     49 FALSE
6    120 TRUE
7     75 FALSE
8     32 FALSE
```

case_when

To evaluate multiple conditions in order.

The value to return if
this CONDITION is TRUE

```
case_when(CONDITION 1 ~ VALUE 1, 1  
          CONDITION 2 ~ VALUE 2, 2  
          CONDITION 3 ~ VALUE 3, 3  
          TRUE           ~ VALUE 4) 4
```

Each condition is evaluated
in turn; the order is important.

Bonus: tidylog

cran.r-project.org/package=tidylog

```
library(tidyverse)
library(tidylog, warn.conflicts = FALSE)

filtered <- filter(mtcars, cyl == 4)

merged <- left_join(band_members,
                     band_instruments,
                     by = "name")
```

Demonstration