Data manipulation in R

RStudio Source Editor

name year month day hour lat long status

1 Amy 1975 6 27 [27.5 -79.0 tropical depres
2 Amy 1975 6 27 6 285 -79.0 tropical depres
3 Amy 1975 6 27 12 295 -79.0 tropical depres
4 Amy 1975 6 27 18 30.5 -79.0 tropical depres
5 Amy 1975 6 28 0 315 -78.8 tropical depres
6 Amy 1975 6 28 6 32.4 -78.7 tropical depres
7 Amy 1975 6 28 12 333 -78.0 tropical depres
8 Amy 1975 6 28 18 340 -77.0 tropical depres
9 Amy 1975 6 29 0 34.4 -75.8 tropical storm
197 6 29 6 34.0 -74.8 tropical storm

6 29 12 338 -73.8 tropical storm

6 29 18 338 -72.8 tropical storm

6 30 0 343 -71.6 tropical storm

6 30 6 356 -70.8 tropical storm

6 30 12 35.9 ~70.5 tropical storm

6 Amy 1975 6 30 18 36.2 -70.2 tropical stor

Showing 1 to 16 of 11,859 entries, 13 total columns

You will spend most of your time cleaning data.

Home Insert Draw Pagelayout Formuas Data Review View Tellme 2 share || © cComments
s 5
A B G D B F G H

1 Data most recently refreshed on: Dec-27 2020

2 FirstName Last Name Employee Status Subject Hire Date % Allocated Full time? do not edit! —>
3 Jason Bourne Teacher PE 39690 Missing Yes

4 Jason Bourne Teacher Drafting 14/01/2019 25% Yes

5 Alicia Keys Teacher Music 15/08/2001 100% Yes Iiuat aitemate certifications
6 Ada Lovelace Teacher 4 #REF! 38572 100% Yes |in columns to right

7 Desus Nice Administration Dean 25/02/2017 100% Yes

8 Chien-Shiung Wu Teacher Physics 11037 50% Yes

9 Chien-Shiung Wu Teacher Chemistry 11037 50% Yes

10

11 James Joyce Teacher English 20/09/1999 50% No

12 Hedy Lamarr Teacher Science 27919 50% No

13 Carlos Boozer Coach Basketball 422217 #N/A No

14 Young Boozer Coach 34700' #N/A No

15 Micheal Larsen Teacher English 40071 80% No

16

17 1 Needs to be checked!!

Shett |+

Ready 3% Accessibity: Investigate [I — -+ 230%

Session overview

1. Alternative packages
2. Pipes
3. Essential data manipulation tasks

a) Select columns or rows
b) Sorting a dataset
c) Creating or modifying columns
d) Combining datasets
e) Reshaping a dataset
)

f) Grouping and summarising data

There are many approaches to data manipulation in R.

Base R tidyverse data.table

tidyverse

®
data.table

e Use the right tool for the job.
e Use whatever feels most comfortable and productive.
What do | use?

The tidyverse

“an opinionated collection of R packages designed for data
science. All packages share an underlying philosophy and
common APIs”.

www.tidyverse.org

tidyverse

You don’t need to learn all these packages.
Just use what you need.
(Use the “Reference” help pages).
This session uses functions from dplyr and tidyz.

| can never remember which functions come from
which package.

It's fine.

https://dplyr.tidyverse.org/reference/index.html

https://rdatatable.gitlab.io/data.table/

eoce @M - @ rdatatable.gitlab.io

data.table

data. table provides a high-performance version of base R's
data.frame with syntax and feature enhancements for ease of use,
convenience and programming speed.

Why data.table?)
data.table

* concise syntax: fast to type, fast to read
* fast speed
* memory efficient
« careful AP lifecycle management
* community
« feature rich
Features
« fast and friendly delimited file reader: ?fread , see also convenience features for small data
« fast and feature rich delimited file writer: ?fwrite
« low-level parallelism: many common operations are internally parallelized to use multiple CPU threads
 fast and scalable aggregations; e.g. 100GB in RAM (see benchmarks on up to two billion rows)
 fast and feature rich joins: ordered joins (e.g. rolling forwards, backwards, nearest and limited staleness),

overlapping range joins (similar to IRanges: : findOverlaps), non-equi joins (i.e. joins using operators
), aggregate on join (by=.EACHI), update on join
fast add/upda\e/delste columns by reference by group using no copies at all

(U} O h + 8

Links

View on CRAN
Browse source code
Report a bug
CRAN-like website
License
MPL-2.0 | file LICENSE
Community
Contributing guide
Citation

Citing data.table
Developers

Matt Dowle
Author, maintainer

Arun Srinivasan
Author

More about authors.

Dev status

See this page for a comparison of dplyr and data.table

See also: dtplyr

https://rdatatable.gitlab.io/data.table/
https://atrebas.github.io/post/2019-03-03-datatable-dplyr
https://dtplyr.tidyverse.org

Pipes

We can use |> to chain commands together

R code is traditionally written as a series of statements.

df <- read_dta("stata_dataset.dta")
df <- df[df$age > 18]

df$log_income <- log(df$income)
df$female <- data$gender == "Female"

We can use |> to chain commands together

R code is traditionally written as a series of statements.

df <- read_dta("stata_dataset.dta")

df <- df[df$age > 18]

df$log_income <- log(df$income)

df$female <- data$gender == "Female"

The pipe allows us to chain together several statements.

df <- read _dta("stata_dataset.dta") |>
filter(age > 18) |[>
mutate(log_income = log(income),
female = gender == "Female")

How does it work?

A pipe takes output from one command and uses it as
input to the next.

read_csv mutate

Import a Recode a
CSV file variable

They are written as I > at the end of a line.

You need to save the output by assigning to an object.
clean_data <- messy_data |[>

mutate(...) [>

pivot_wider(...)

Session overview

1. Alternative packages
2. Pipes

3. Essential data manipulation tasks

Essential data
manipulation tasks

a) Select columns or rows

b) Sorting a dataset

c) Creating or modifying columns
d) Combining datasets

e) Reshaping a dataset

f) Grouping and summarising data

Let’s load some data...
> library(tidyverse) # Load the tidyverse package
> data(starwars) # Load a built-in dataset
> head(starwars)
A tibble: 6 x 13
name height mass hair_color skin_color eye_color birt

<chr> <int> <dbl> <chr> <chr> <chr>

1 Luke Skywalker 172 77 blond fair

2 C-3P0 167 75 <NA> gold

3 R2-D2 96 32 <NA> white, blue

4 Darth Vader 202 136 none white

5 Leia Organa 150 49 brown light

6 Owen Lars 178 120 brown, grey light

... with 4 more variables: species <chr>, films <list>

e Get a list of the variables in this data frame.
¢ How many rows and columns are there?

a) Selecting rows and columns

We've already seen how subsetting can be used to select
parts of objects.

For example, we can select rows and columns by number:
starwars[1:5,]

starwars[, c(1, 3, 8)]

Or by name:

starwars$height

starwars[, c("birth_year", "homeworld")]

Select and drop columns with select

starwars |>
select(birth_year, homewoxrld)

Negate to remove a column
starwars |>
select(-eye_color)

Select several columns
starwars |>
select(starts with("h"),
ends_with("coloxr"),
matches("or$")

You can rename at the same time.

starwars |>
select(new_name = old_name)

To rename without dropping other
variables, use rename:

starwars |>
rename (new_name = old_name)

Select rows with filter

filter selects rows based on a condition.

For example, select all rows where mass is above 100:

starwars |>
filter(mass > 100)

Separate multiple conditions with a comma:
starwars |>
filter(mass > 100,
eye_color == "yellow",
homeworld == "Tatooine")

b) Sorting a dataset with arrange

starwars |>
arrange (height)

Sorting on multiple columns
starwars |>
arrange (height, mass)

Sort in descending order
starwars |>
arrange(desc(height))

Practical: pipes, select, filter, and arrange

From the starwars data frame:

1. Select the columns height, mass,
gender, and species.

2. Filter to select rows with height less
than 191 and with species equal to
“Human”.

3. Sort the result by height.

Use pipes to combine each operation; store the
result as a new data frame.

c) Create or modify variables with mutate

In base R, we can create new columns using the
assignment operator:

df$eligible <- TRUE

df$log_income <- log(df$income)
df$female <- df$sex == "Female"

We can transform existing variables using subsetting:

Replace “Not applicable” with NA.
df$wstat[df$wstat == "Not applicable"] <- NA

Create binary measure of age:

df$older <- 0
df$older[dffage > 50] <- 1

But mutate makes this easier.

df <- df |>
mutate(eligible = TRUE,
log_income = log(income),
female = sex == "Female")

But mutate makes this easier.

df <- df |>
mutate(eligible = TRUE,
log_income = log(income),
female = sex == "Female")

Things to note:
e We're not using subsetting or quoting.

e We can include multiple statements inside a
single mutate function.

e We can use earlier computations in later ones.
¢ We need to store the result.

Practical: Creating and modifying columns

1. Load the tidyverse package and the mtcars
dataset.

2. Add a new column indicating whether a car
weighs over 3000 Ibs (i.e. wt > 3).

i. Using subsetting
ii. Using mutate

3. Tabulate this new column against the number
of cylinders (cyl).

Practical: Creating and modifying columns

i. Using subsetting
mtcars$heavy <- mtcars$wt > 3
ii. Using mutate

mtcars <- mtcars |>
mutate (heavy = wt > 3)

3. table(mtcars$heavy, mtcars$cyl)

d) Combining datasets

Appending two data frames

id_age height
001 45 1.87 001 45 1.87
002 33 + 143 —/ (002 33 1.43

003 63 1.68 003 63 1.68

d) Combining datasets

Appending two data frames

id_age height

001 45 1.87 001 45 1.87
002 33 + 143 —> (002 33 1.43
003 63 1.68 003 63 1.68

Merging or ‘joining’ two data frames

id height id age height
001 45 002 1.87 > 001 45 1.43
002 33 + 001 1.43 002 33 1.87

003 63 003 1.68 — 003 63 1.68

Append with bind_rows and bind_cols

1. Select some columns
a <- starwars[, 2:4]
b <- starwars[, 9]

Append with bind_rows and bind cols

1. Select some columns
a <- starwars[, 2:4]
¥ a # b

height mass hair_color homeworld

<int> <dbl> <chr> <chr>
1 172 77 blond 1 Tatooine
2 167 75 <NA> 2 Tatooine
3 96 32 <NA> 3 Naboo
4 202 136 none 4 Tatooine
5 150 49 brown 5 Alderaan
6 178 120 brown, grey 6 Tatooine
7 165 75 brown 7 Tatooine
8 97 32 <NA> 8 Tatooine

... with 79 more rows # ... with 79 more rov

Bind them together
bind_cols(a, b)

A tibble: 87 x 4

height mass hair_color homeworld
<int> <dbl> <chr> <chr>

1 172 77 blond Tatooine
2 167 75 <NA> Tatooine
3 96 32 <NA> Naboo
4 202 136 none Tatooine
5 150 49 brown Alderaan
6 178 120 brown, grey Tatooine
7 165 75 brown Tatooine
8 97 32 <NA> Tatooine
9 183 84 black Tatooine
10 182 77 auburn, white Stewjon

<
-

. with 77 more zrows

¥ For rows...
a <- starwars[1:5,]
b <- starwars[20:30,]

bind rows(a, b)

For rows...
a <- starwars[1:5,]
b <- starwars[20:30,]

bind rows(a, b)

These commands are replacements the cbind and
rbind from base R.

Merging with x_join

e We merge to combine variables held in separate
datasets based on one or more common keys.

Merging with x_join

e We merge to combine variables held in separate
datasets based on one or more common keys.

e These operations are referred to as joins.

Merging with x_join

e We merge to combine variables held in separate
datasets based on one or more common keys.

e These operations are referred to as joins.

X y
1| x1|]1|yl
2|x2|[2]|y2
3[x3][4]y3

Source: R for Data Science (Wickham and Grolemund, 2017)

Merging with x_join

e We merge to combine variables held in separate
datasets based on one or more common keys.

e These operations are referred to as joins.

X y
1| x1|]1|yl
2|x2|[2]|y2
3[x3][4]y3

e Ajoin is a way of connecting each row in x to zero,
one, or more rows in .

Source: R for Data Science (Wickham and Grolemund, 2017)

Merging with x_join

e We merge to combine variables held in separate
datasets based on one or more common keys.

e These operations are referred to as joins.

X y

1| x1|]1|yl
2|x2|[2]|y2
3[x3][4]y3

e Ajoin is a way of connecting each row in x to zero,
one, or more rows in .

¢ The type of join we need depends on how many keys
from x are also found in .
Source: R for Data Science (Wickham and Grolemund, 2017)

We're going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left _join keeps all observations in x.
right_join keeps all observationsiny.
full join keeps all observations in x and y.

We're going to focus on four types of join:

innexr_join matches pairs of observations whenever
their keys are equal.
left join keeps all observations in x.
right_join keeps all observationsiny.
full join keeps all observations in x and y.

8 m

R
SO

vyl
X2 |y2

&

We're going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left_join keeps all observations in x.
right_join keeps all observationsiny.
full join keeps all observations in x and y.

S| valy

wml—-key

NA

We're going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left _join keeps all observations in x.
right_join keeps all observationsiny.
full join keeps all observations in x and y.

val_y

—

y

.n-mn—-key

y3

We're going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left _join keeps all observations in x.
right_join keeps all observationsiny.
full_join keeps all observations in x and y.

val_x

slw| =] key
>
—

e By default, data frames are joined based on variables
that appear in both tables.

e Unlike other packages, you don’t always need to
specify the joining key.

If in doubt, | try full_join first and drop matches that
aren’t needed.

e By default, data frames are joined based on variables
that appear in both tables.

e Unlike other packages, you don’t always need to
specify the joining key.

If in doubt, | try full_join first and drop matches that

aren’t needed.
i

band _members band_instruments
name band name plays
Mick Stones John guitar
John Beatles Paul bass

Paul Beatles Keith guitar

band_members |> inner_join(band_instruments)

band_members |> inner_join(band_instruments)

band_members |> left_join(band_instruments)

band_members |> inner_join(band_instruments)
band_members |> left_join(band_instruments)

band_members |> right_join(band_instruments)

band_members
band_members
band_members

band_members

|> inner_join(band_instruments)
|> left_join(band_instruments)
|> right_join(band_instruments)

|> full_join(band_instruments)

Tidy data

What is tidy data?

“All happy families resemble one

another; every unhappy family is Wl s e
unhappy in its own way.” _
Leo Tolstoy (1878)

“Tidy datasets are all alike, but every
messy dataset is messy in its own

”

way.

Hadley Wickham (2014)

Journal of Statistical Software, 59(10), 1-23.
https://doi.org/10.18637/jss.v059.110

https://doi.org/10.18637/jss.v059.i10

L

1. Each variable forms a column.
2. Each observation forms a row.

3. Each type of observational unit forms a table.

AAAAAA
YYVVYVYY
000000

Variables Observations

000000
5 000000

5

000000

When working with tidy ...but working with untidy data
data, we can use the often means reinventing the
same tools in similar ways wheel with one-time approaches

for different datasets... that are hard to iterate or reuse.

TIDY DATA WORKBENCH 1 UNTIDY DATA WORKBENCH

lllustrations adapted from the Openscapes blog Tidy Data for reproducibility, efficiency,
and collaboration by Julia Lowndes and Allison Horst.

a) Select columns or rows

b) Sorting a dataset

c) Creating or modifying columns
d) Combining datasets

e) Reshaping a dataset

f) Grouping and summarising data

e) From WIDE to LONG with pivot longer

> relig_income

A tibble: 18 x 11
religion '<$10k"
<chr> <dbl>

1 Agnostic 27
2 Atheist 12
3 Buddhist 27
4 Catholic 418
5 Don't know 15
6 Evangel... 5715
7 Hindu 1
8 Histori... 228
9 Jehovah 20

10 Jewish 19

11 Mainlin 289

12 Moxrmon 29

13 Muslim 6

14 Orthodox 13

15 Other C... 9

16 Other F... 20

17 Other W... 5

18 Unaffil... 217

i

>150k"

...with 4 more variables:
<dbl>,

*$10-20k"
<dbl>
34

27

21
617
14
869

9

244
27

19
495
40

7

17

7

33

2

299

*$20-30k"
<dbl>
60

37

30
732
15
1064
7

236
24

255
619
48

9

23

11
40

3
374

'$75-100k’ <dbl>,
‘Don't know/refused®

‘$30-40k" '$40-50k" ‘$50-75k’
<dbl> <dbl> <dbl>
81 76 137
52 35 70
34 33 58
670 638 1116
11 10 35
982 881 1486
9 11 34
238 197 223
24 21 30
25 30 95
655 651 1107
51 56 112
10 9 23
32 32 47
13 13 14
46 49 63
4 2 7
365 341 528
'$100-150k" <dbl>,

<db1l>

From WIDE to LONG with pivot_longer

Name for new

inOt_longer (data , label column
cols, j
Columns to/ names to = "name")
reshape - |)
values_to = "value")

Name of new’j

values column

> relig_income
A tibble: 18 x 11

O 0O~JOo b, wN PR

10
11
12
13
14
15
16
17
18
i

religion '<$10k"

<chr> <dbl>
Agnostic 27
Atheist 12
Buddhist 27
Catholic 418
Don't know 15
Evangel... 575
Hindu 1
Histori... 228
Jehovah 20
Jewish 19
Mainlin 289
Mormon 29
Muslim 6
Orthodox 13
Other C... 9
Other F... 20
Other W... 5
Unaffil... 217

...with 4 more variables:
>150k" <dbl>, "Don't know/refused’

*$10-20k"
<dbl>
34

27

21
617
14
869

9

244
27

19
495
40

7

17

7

33

2

299

*$20-30k"
<dbl>
60

37

30
732
15
1064
7

236
24

25
619
48

9

23

11

40

3

374

*$75-100k" <dbl>,
<dbl>

'$30-40k’ "$40-50k' ‘$50-75k"
<dbl> <dbl> <dbl>
81 76 137
52 35 70
34 33 58
670 638 1116
11 10 35
982 881 1486
9 11 34
238 197 223
24 21 30
25 30 95
655 651 1107
51 56 112
10 9 23
32 32 47
13 13 14
46 49 63
4 2 7
365 341 528
*$100-150k" <dbl>,

relig_income |>

pivot_longer(cols = -religion,
names_to = "income",
values_to = "count")

A tibble: 180 x 3
religion income count
<chr> <chr> <dbl>
1 Agnostic <$10k 27
2 Agnostic $10-20k 34
3 Agnostic $20-30k 60
4 Agnostic $30-40k 81
5 Agnostic $40-50k 76
6 Agnostic $50-75k 137
7 Agnostic $75-100k 122
8 Agnostic $100-150k 109
9 Agnostic >150k 84
10 Agnostic Don't know/refused 96
11 Atheist <$10k 12
12 Atheist $10-20k 27
13 Atheist $20-30k 37
14 Atheist $30-40k 52
15 Atheist $40-50k 35
16 Atheist $50-75k 70

Another example...

> billboard
artist
2 Pac

track date.entered wkl wk2 wk3 wk4 wk

Baby Don't Cry (Keep...

2Ge+her The Hardest Part Of ...

3 Doors Down
3 Doors Down
504 Boyz

9870

AxTeens
Aaliyah
Aaliyah
Adams, Yolanda
Adkins, Trace
Alice Deejay
Allan, Gary
Amber
Anastacia
Anthony, Marc
Anthony, Marc
Avant

Avant

BBMak

Badu, Erkyah
Baha Men

Kryptonite
Loser
Wobble Wobble

Give Me Just One Nig...

Dancing Queen

I Don't Wanna
Try Again

Open My Heart
More

Better 0ff Alone

Smoke Rings In The D...

Sexual

I'm Outta Love

My Baby You

You Sang To Me

My First Love
Separated

Back Here

Bag Lady

Who Let The Dogs Out

2000-02-26
2000-09-02
2000-04-08
2000-10-21
2000-04-15
2000-08-19
2000-07-08
2000-01-29
2000-03-18
2000-08-26
2000-04-29
2000-04-08
2000-01-22
1999-07-17
2000-04-01
2000-09-16
2000-02-26
2000-11-04
2000-04-29
2000-04-29
2000-08-19
2000-07-22

87
91
81
76
57
51
97
84
59
76
84
79
80
99
92
82
77
70
62
99
67
99

82
87
70
76
34
39
97
62
58
76
84
65
78
99
NA
76
54
62
32
86
58
92

72
92
68
72
25
34
96
51
38
74
75
58
76
96
NA
76
50
56
30
60
42
85

77
NA
67
69
17
26
95
41
28
69
73
48
77
96
95
70
43
43
23
52
41
76

oD WMNWWOOLHLIHZOOUDYIONWONEO O ZO0O

> billboard |>
pivot_longer(starts_with("wk"),

>
>
>

=

names_to = "week",
values_to = "chart_position")
A tibble: 24,092 x 5
artist track date.entered
<chr> <chr> <date>
1 2 Pac Baby Don't Cry (Keep... 2000-02-26
2 2 Pac Baby Don't Cry (Keep... 2000-02-26
3 2 Pac Baby Don't Cry (Keep... 2000-02-26
4 2 Pac Baby Don't Cry (Keep... 2000-02-26
5 2 Pac Baby Don't Cry (Keep... 2000-02-26
6 2 Pac Baby Don't Cry (Keep... 2000-02-26
7 2 Pac Baby Don't Cry (Keep... 2000-02-26
8 2 Pac Baby Don't Cry (Keep... 2000-02-26
9 2 Pac Baby Don't Cry (Keep... 2000-02-26
©@ 2 Pac Baby Don't Cry (Keep... 2000-02-26

week cha
<chr>
wkl
wk2
wk3
wk4
wk5
wké
wk7
wk8
wk9
wk10

> billboard |>

> pivot_longer(starts_with("wk"),
> names_to = "week",
> values_to = "chart_position")
> mutate (week = parse_number (week))
A tibble: 24,092 x 5
artist track date.entered
<chr> <chr> <date>
1 2 Pac Baby Don't Cry (Keep... 2000-02-26
2 2 Pac Baby Don't Cry (Keep... 2000-02-26
3 2 Pac Baby Don't Cry (Keep... 2000-02-26
4 2 Pac Baby Don't Cry (Keep... 2000-02-26
5 2 Pac Baby Don't Cry (Keep... 2000-02-26
6 2 Pac Baby Don't Cry (Keep... 2000-02-26
7 2 Pac Baby Don't Cry (Keep... 2000-02-26
8 2 Pac Baby Don't Cry (Keep... 2000-02-26
9 2 Pac Baby Don't Cry (Keep... 2000-02-26
10 2 Pac Baby Don't Cry (Keep... 2000-02-26

| >

week cha
<chr>
wkl
wk2
wk3
wk4
wk5
wké
wk7
wk8
wk9
wk10

>
>
>
>
>
>

[

A tibble:
artist

OVvVoOoONoccUubWNPRE

billboard
pivot_longer(starts_with("wk"),
names_to = "week",
values_to

<
2

NNNDNDDN

2

chr>
Pac
Pac
Pac
Pac
Pac
Pac
Pac

| >

track
<chr>
Baby
Baby
Baby
Baby
Baby
Baby
Baby

= "chart_position",

values_drop_na
mutate (week = parse_number (week))

5,307 x 5

Don't
Don't
Don't
Don't
Don't
Don't
Don't

Cry
Cry
Cry
Cry
Cry
Cry
Cry

(Keep. ..
(Keep. ..
(Keep. ..
(Keep. ..
(Keep. ..
(Keep. ..
(Keep. ..
2Ge+her The Hardest Part O0f ...
2Ge+her The Hardest Part O0f ...
2Ge+her The Hardest Part O0f ...

TRUE) |>

date.entered
<date>
2000-02-26
2000-02-26
2000-02-26
2000-02-26
2000-02-26
2000-02-26
2000-02-26
2000-09-02
2000-09-02
2000-09-02

week ch

<dbl>

=

WNEPJO0o0abPrwN

values_drop_na = TRUE) |>
mutate(week = parse_number (week))

> longer <- billboard |>

> pivot_longer(starts_with("wk"),

> names_to = "week",

> values_to = "chart_position",
>

>

From LONG to WIDE with pivot_wider

An existing column
that will become the
column headings

pivot_wider(data, {,
names_from = "name",
values from = "value")

& An existing column

containing the values.

Suppose we already have our data in LONG format...

artist track date.entered week chart_position
2 Pac Baby Don't 2000-02-26 1 87
2 Pac Baby Don't 2000-02-26 2 82
2 Pac Baby Don't 2000-02-26 3 72
2 Pac Baby Don't 2000-02-26 4 77
2 Pac Baby Don't 2000-02-26 5 87
2 Pac Baby Don't 2000-02-26 6 94
2 Pac Baby Don't 2000-02-26 7 99
2Ge+her The Hardest 2000-09-02 1 91
2Ge+her The Hardest 2000-09-02 2 87
2Ge+her The Hardest 2000-09-02 3 92
3 Doors Down Kryptonite 2000-04-08 1 81
3 Doors Down Kryptonite 2000-04-08 2 70
3 Doors Down Kryptonite 2000-04-08 3 68
3 Doors Down Kryptonite 2000-04-08 4 67
3 Doors Down Kryptonite 2000-04-08 5 66
3 Doors Down Kryptonite 2000-04-08 6 57/
3 Doors Down Kryptonite 2000-04-08 7 54
3 Doors Down Kryptonite 2000-04-08 8 58]
3 Doors Down Kryptonite 2000-04-08 9 51
3 Doors Down Kryptonite 2000-04-08 10 51
3 Doors Down Kryptonite 2000-04-08 11 51
3 Doors Down Kryptonite 2000-04-08 12 51
3 Doors Down Kryptonite 2000-04-08 13 47
3 Doors Down Kryptonite 2000-04-08 14 44

pivot_wider(data,
names_from
values_from

Practical: pivoting between LONG and WIDE

1. Reshape the fish encounters dataset to
WIDE format, such that each column
represents a different monitoring station. After
reshaping, is this dataset ‘tidy’? Why?

. Reshape the world _bank_pop dataset to
LONG format, such that it contains three
columns: country, indicator, and year.

. (If time) Reshape the table?2 dataset such that
there is a separate column for ‘cases’ and
‘population’.

f) Grouping and summarising data

The column to summarise \

data |>
summarise(new = function(old))
Thﬁgﬂglmﬁ / The function with which

to summarise (e.g., mean).

Note the differences with mutate

[N
—
(@)
=
|
=
—
(@)
=

mutate

n
C
3
3
QD
H
R
wn
D

Many rows =1 row

=

Vv

For example, calculate the mean and standard
deviation of a column:

mtcars |>
summarise(mean = mean(wt),
sd = sd(wt))
mean sd

3.21725 0.9784574

As with mutate, we can have multiple expressions,
separated by commas.

Grouping data with group_by

We often want to calculate summaries for
subgroups in our data.

Average fuel efficiency by number
of cylinders?
mtcars |>
group_by(cyl) [>
summarise(efficiency = mean(mpg))
A tibble: 3 x 2
cyl efficiency

<dbl> <dbl>

4 26.66364

6 19.74286

8 15.10000

+ + V Vv V

Note that, once you define the grouping, all
subsequent operations to be grouped.

For example, mutate:
> mtcars |[>
+ group_by(cyl) [>

+ mutate(max = max(mpg))

This will calculate the maximum per group.

Phew, that was a lot...

1. Alternative packages
2. Pipes
3. Essential data manipulation tasks

Select columns or rows
Sorting a dataset

Creating or modifying columns
Combining datasets

Reshaping a dataset

a
b
C
d
e
f

—_ — — ~— — ~—

Grouping and summarising data

Recoding variables...

Recoding with 1f_else and case_when

Two functions that solve many common data cleaning tasks.

/ A statement that returns

TRUE or FALSE .
The value to return if

if else(CONDITION, (CONDITIONisTRUE
VALUE IF TRUE,
VALUE IF FALSE)

The value to return if
CONDITION is FALSE.

> starwars |>
it mutate (weight = if_else(mass > 80,
+ "Heavy",
+ "Not heavy")) |[>
+ select(mass, weight)
A tibble: 87 x 2
mass weight
<dbl> <chr>
77 Not heavy
75 Not heavy
32 Not heavy
136 Heavy
49 Not heavy
120 Heavy
75 Not heavy
32 Not heavy
84 Heavy

77 ANA4+ LhAAvys

D O 0O 01k WDN P

S

However, if you're creating a binary indicator
(TRUE/FALSE), there's a simpler option:

> starwars |[>
> mutate(heavy = mass > 80) |>
> select(mass, heavy)
A tibble: 87 x 2
mass heavy
<dbl> <l1lgl>

77 FALSE

75 FALSE

32 FALSE

136 TRUE

49 FALSE

120 TRUE

75 FALSE

32 FAIl SF

0 o001 B WwWDN B

case_when

To evaluate multiple conditions in order.

The value to return if
this CONDITION is TRUE ~

case_when(CONDITION 1 ~ VALUE 1,
CONDITION 2 ~ VALUE 2,
CONDITION 3 ~ VALUE 3,
TRUE ~ VALUE 4)

Each condition is evaluated
in turn; the order is important.

Bonus: tidylog

cran.r-project.org/package=tidylog

library(tidyverse)
library(tidylog, warn.conflicts = FALSE)

filtered <- filter(mtcars, cyl == 4)
merged <- left_join(band_members,

band_instruments,
by = "name")

Demonstration

https://cran.r-project.org/package=tidylog

