
Data manipulation in R

You will spend most of your time cleaning data.

Session overview
1. Alternative packages
2. Pipes
3. Essential data manipulation tasks

a) Select columns or rows
b) Sorting a dataset
c) Creating or modifying columns
d) Combining datasets
e) Reshaping a dataset
f) Grouping and summarising data

There are many approaches to data manipulation in R.

• Use the right tool for the job.
• Use whatever feels most comfortable and productive.

What do I use?

The tidyverse
“an opinionated collection of R packages designed for data
science. All packages share an underlying philosophy and
common APIs”.

www.tidyverse.org

You don’t need to learn all these packages.

Just use what you need.

(Use the “Reference” help pages).

This session uses functions from dplyr and tidyr.

I can never remember which functions come from
which package.

It’s fine.

https://dplyr.tidyverse.org/reference/index.html

https://rdatatable.gitlab.io/data.table/

See this page for a comparison of dplyr and data.table
See also: dtplyr

https://rdatatable.gitlab.io/data.table/
https://atrebas.github.io/post/2019-03-03-datatable-dplyr
https://dtplyr.tidyverse.org

Pipes

We can use |> to chain commands together

R code is traditionally written as a series of statements.
df <- read_dta("stata_dataset.dta")
df <- df[df$age > 18]
df$log_income <- log(df$income)
df$female <- data$gender == "Female"

The pipe allows us to chain together several statements.
df <- read_dta("stata_dataset.dta") |>

filter(age > 18) |>
mutate(log_income = log(income),

female = gender == "Female")

We can use |> to chain commands together

R code is traditionally written as a series of statements.
df <- read_dta("stata_dataset.dta")
df <- df[df$age > 18]
df$log_income <- log(df$income)
df$female <- data$gender == "Female"
The pipe allows us to chain together several statements.
df <- read_dta("stata_dataset.dta") |>

filter(age > 18) |>
mutate(log_income = log(income),

female = gender == "Female")

How does it work?
A pipe takes output from one command and uses it as
input to the next.

They are written as at the end of a line.

You need to save the output by assigning to an object.
clean_data <- messy_data |>

mutate(...) |>
pivot_wider(...)

Session overview
1. Alternative packages
2. Pipes
3. Essential data manipulation tasks

Essential data
manipulation tasks

a) Select columns or rows

b) Sorting a dataset

c) Creating or modifying columns

d) Combining datasets

e) Reshaping a dataset

f) Grouping and summarising data

Let’s load some data…
> library(tidyverse) # Load the tidyverse package
> data(starwars) # Load a built-in dataset
> head(starwars)
A tibble: 6 x 13
name height mass hair_color skin_color eye_color birth_year gender homeworld
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Luke Skywalker 172 77 blond fair blue 19.0 male Tatooine
2 C-3PO 167 75 <NA> gold yellow 112.0 <NA> Tatooine
3 R2-D2 96 32 <NA> white, blue red 33.0 <NA> Naboo
4 Darth Vader 202 136 none white yellow 41.9 male Tatooine
5 Leia Organa 150 49 brown light brown 19.0 female Alderaan
6 Owen Lars 178 120 brown, grey light blue 52.0 male Tatooine
... with 4 more variables: species <chr>, films <list>, vehicles <list>, starships <list>

• Get a list of the variables in this data frame.
• How many rows and columns are there?

a) Selecting rows and columns

We’ve already seen how subsetting can be used to select
parts of objects.

For example, we can select rows and columns by number:
starwars[1:5,]
starwars[, c(1, 3, 8)]
Or by name:
starwars$height
starwars[, c("birth_year", "homeworld")]

Select and drop columns with select
starwars |>

select(birth_year, homeworld)

Negate to remove a column
starwars |>

select(-eye_color)

Select several columns
starwars |>

select(starts_with("h"),
ends_with("color"),
matches("or$")

You can rename at the same time.
starwars |>

select(new_name = old_name)

To rename without dropping other
variables, use rename:

starwars |>
rename(new_name = old_name)

Select rows with filter

filter selects rows based on a condition.

For example, select all rows where mass is above 100:

starwars |>
filter(mass > 100)

Separate multiple conditions with a comma:
starwars |>

filter(mass > 100,
eye_color == "yellow",
homeworld == "Tatooine")

b) Sorting a dataset with arrange

starwars |>
arrange(height)

Sorting on multiple columns
starwars |>

arrange(height, mass)

Sort in descending order
starwars |>

arrange(desc(height))

Practical: pipes, select, filter, and arrange

From the starwars data frame:

1. Select the columns height, mass,
gender, and species.

2. Filter to select rows with height less
than 191 and with species equal to
“Human”.

3. Sort the result by height.
Use pipes to combine each operation; store the
result as a new data frame.

c) Create or modify variables with mutate
In base R, we can create new columns using the
assignment operator:
df$eligible <- TRUE
df$log_income <- log(df$income)
df$female <- df$sex == "Female"

We can transform existing variables using subsetting:

Replace “Not applicable” with NA.
df$wstat[df$wstat == "Not applicable"] <- NA
Create binary measure of age:
df$older <- 0
df$older[df$age > 50] <- 1

But mutate makes this easier.
df <- df |>

mutate(eligible = TRUE,
log_income = log(income),
female = sex == "Female")

Things to note:
• We’re not using subsetting or quoting.
• We can include multiple statements inside a
single mutate function.

• We can use earlier computations in later ones.
• We need to store the result.

But mutate makes this easier.
df <- df |>

mutate(eligible = TRUE,
log_income = log(income),
female = sex == "Female")

Things to note:
• We’re not using subsetting or quoting.
• We can include multiple statements inside a
single mutate function.

• We can use earlier computations in later ones.
• We need to store the result.

Practical: Creating and modifying columns

1. Load the tidyverse package and the mtcars
dataset.

2. Add a new column indicating whether a car
weighs over 3000 lbs (i.e. wt > 3).

i. Using subsetting
ii. Using mutate

3. Tabulate this new column against the number
of cylinders (cyl).

Practical: Creating and modifying columns

2. i. Using subsetting
mtcars$heavy <- mtcars$wt > 3

ii. Using mutate

mtcars <- mtcars |>
mutate(heavy = wt > 3)

3. table(mtcars$heavy, mtcars$cyl)

d) Combining datasets

Appending two data frames

Merging or ‘joining’ two data frames

d) Combining datasets

Appending two data frames

Merging or ‘joining’ two data frames

Append with bind_rows and bind_cols
1. Select some columns
a <- starwars[, 2:4]
b <- starwars[, 9]

a
height mass hair_color
<int> <dbl> <chr>

1 172 77 blond
2 167 75 <NA>
3 96 32 <NA>
4 202 136 none
5 150 49 brown
6 178 120 brown, grey
7 165 75 brown
8 97 32 <NA>
... with 79 more rows

b
homeworld

<chr>
1 Tatooine
2 Tatooine
3 Naboo
4 Tatooine
5 Alderaan
6 Tatooine
7 Tatooine
8 Tatooine

... with 79 more rows

Append with bind_rows and bind_cols
1. Select some columns
a <- starwars[, 2:4]
b <- starwars[, 9]# a
height mass hair_color
<int> <dbl> <chr>

1 172 77 blond
2 167 75 <NA>
3 96 32 <NA>
4 202 136 none
5 150 49 brown
6 178 120 brown, grey
7 165 75 brown
8 97 32 <NA>
... with 79 more rows

b
homeworld

<chr>
1 Tatooine
2 Tatooine
3 Naboo
4 Tatooine
5 Alderaan
6 Tatooine
7 Tatooine
8 Tatooine

... with 79 more rows

Bind them together
bind_cols(a, b)

A tibble: 87 x 4
height mass hair_color homeworld
<int> <dbl> <chr> <chr>

1 172 77 blond Tatooine
2 167 75 <NA> Tatooine
3 96 32 <NA> Naboo
4 202 136 none Tatooine
5 150 49 brown Alderaan
6 178 120 brown, grey Tatooine
7 165 75 brown Tatooine
8 97 32 <NA> Tatooine
9 183 84 black Tatooine

10 182 77 auburn, white Stewjon
... with 77 more rows

For rows...
a <- starwars[1:5,]
b <- starwars[20:30,]

bind_rows(a, b)

These commands are replacements the cbind and
rbind from base R.

For rows...
a <- starwars[1:5,]
b <- starwars[20:30,]

bind_rows(a, b)

These commands are replacements the cbind and
rbind from base R.

Merging with *_join
• We merge to combine variables held in separate
datasets based on one or more common keys.

• These operations are referred to as joins.

• A join is a way of connecting each row in x to zero,
one, or more rows in y.

• The type of join we need depends on how many keys
from x are also found in y.

Source: R for Data Science (Wickham and Grolemund, 2017)

Merging with *_join
• We merge to combine variables held in separate
datasets based on one or more common keys.

• These operations are referred to as joins.

• A join is a way of connecting each row in x to zero,
one, or more rows in y.

• The type of join we need depends on how many keys
from x are also found in y.

Source: R for Data Science (Wickham and Grolemund, 2017)

Merging with *_join
• We merge to combine variables held in separate
datasets based on one or more common keys.

• These operations are referred to as joins.

• A join is a way of connecting each row in x to zero,
one, or more rows in y.

• The type of join we need depends on how many keys
from x are also found in y.

Source: R for Data Science (Wickham and Grolemund, 2017)

Merging with *_join
• We merge to combine variables held in separate
datasets based on one or more common keys.

• These operations are referred to as joins.

• A join is a way of connecting each row in x to zero,
one, or more rows in y.

• The type of join we need depends on how many keys
from x are also found in y.

Source: R for Data Science (Wickham and Grolemund, 2017)

Merging with *_join
• We merge to combine variables held in separate
datasets based on one or more common keys.

• These operations are referred to as joins.

• A join is a way of connecting each row in x to zero,
one, or more rows in y.

• The type of join we need depends on how many keys
from x are also found in y.

Source: R for Data Science (Wickham and Grolemund, 2017)

We’re going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left_join keeps all observations in x.
right_join keeps all observations in y.
full_join keeps all observations in x and y.

We’re going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left_join keeps all observations in x.
right_join keeps all observations in y.
full_join keeps all observations in x and y.

We’re going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left_join keeps all observations in x.
right_join keeps all observations in y.
full_join keeps all observations in x and y.

We’re going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left_join keeps all observations in x.
right_join keeps all observations in y.
full_join keeps all observations in x and y.

We’re going to focus on four types of join:

inner_join matches pairs of observations whenever
their keys are equal.

left_join keeps all observations in x.
right_join keeps all observations in y.
full_join keeps all observations in x and y.

• By default, data frames are joined based on variables
that appear in both tables.

• Unlike other packages, you don’t always need to
specify the joining key.

If in doubt, I try full_join first and drop matches that
aren’t needed.

band_members
name band
Mick Stones
John Beatles
Paul Beatles

band_instruments
name plays
John guitar
Paul bass
Keith guitar

• By default, data frames are joined based on variables
that appear in both tables.

• Unlike other packages, you don’t always need to
specify the joining key.

If in doubt, I try full_join first and drop matches that
aren’t needed.

band_members
name band
Mick Stones
John Beatles
Paul Beatles

band_instruments
name plays
John guitar
Paul bass
Keith guitar

inner_join
band_members |> inner_join(band_instruments)

left_join
band_members |> left_join(band_instruments)
right_join
band_members |> right_join(band_instruments)
full_join
band_members |> full_join(band_instruments)

inner_join
band_members |> inner_join(band_instruments)
left_join
band_members |> left_join(band_instruments)

right_join
band_members |> right_join(band_instruments)
full_join
band_members |> full_join(band_instruments)

inner_join
band_members |> inner_join(band_instruments)
left_join
band_members |> left_join(band_instruments)
right_join
band_members |> right_join(band_instruments)

full_join
band_members |> full_join(band_instruments)

inner_join
band_members |> inner_join(band_instruments)
left_join
band_members |> left_join(band_instruments)
right_join
band_members |> right_join(band_instruments)
full_join
band_members |> full_join(band_instruments)

Tidy data

What is tidy data?

“All happy families resemble one
another; every unhappy family is
unhappy in its own way.”

Leo Tolstoy (1878)

“Tidy datasets are all alike, but every
messy dataset is messy in its own
way.”

Hadley Wickham (2014)

Journal of Statistical Software, 59(10), 1–23.
https://doi.org/10.18637/jss.v059.i10

https://doi.org/10.18637/jss.v059.i10

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

Illustrations adapted from the Openscapes blog Tidy Data for reproducibility, efficiency,
and collaboration by Julia Lowndes and Allison Horst.

a) Select columns or rows

b) Sorting a dataset

c) Creating or modifying columns

d) Combining datasets

e) Reshaping a dataset

f) Grouping and summarising data

e) From WIDE to LONG with pivot_longer
> relig_income
A tibble: 18 x 11

religion `<$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k` `$50-75k`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Agnostic 27 34 60 81 76 137
2 Atheist 12 27 37 52 35 70
3 Buddhist 27 21 30 34 33 58
4 Catholic 418 617 732 670 638 1116
5 Don't know 15 14 15 11 10 35
6 Evangel... 575 869 1064 982 881 1486
7 Hindu 1 9 7 9 11 34
8 Histori... 228 244 236 238 197 223
9 Jehovah 20 27 24 24 21 30

10 Jewish 19 19 25 25 30 95
11 Mainlin 289 495 619 655 651 1107
12 Mormon 29 40 48 51 56 112
13 Muslim 6 7 9 10 9 23
14 Orthodox 13 17 23 32 32 47
15 Other C... 9 7 11 13 13 14
16 Other F... 20 33 40 46 49 63
17 Other W... 5 2 3 4 2 7
18 Unaffil... 217 299 374 365 341 528
...with 4 more variables: `$75-100k` <dbl>, `$100-150k` <dbl>,
>150k` <dbl>, `Don't know/refused` <dbl>

FromWIDE to LONG with pivot_longer

> relig_income
A tibble: 18 x 11

religion `<$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k` `$50-75k`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Agnostic 27 34 60 81 76 137
2 Atheist 12 27 37 52 35 70
3 Buddhist 27 21 30 34 33 58
4 Catholic 418 617 732 670 638 1116
5 Don't know 15 14 15 11 10 35
6 Evangel... 575 869 1064 982 881 1486
7 Hindu 1 9 7 9 11 34
8 Histori... 228 244 236 238 197 223
9 Jehovah 20 27 24 24 21 30

10 Jewish 19 19 25 25 30 95
11 Mainlin 289 495 619 655 651 1107
12 Mormon 29 40 48 51 56 112
13 Muslim 6 7 9 10 9 23
14 Orthodox 13 17 23 32 32 47
15 Other C... 9 7 11 13 13 14
16 Other F... 20 33 40 46 49 63
17 Other W... 5 2 3 4 2 7
18 Unaffil... 217 299 374 365 341 528
...with 4 more variables: `$75-100k` <dbl>, `$100-150k` <dbl>,
>150k` <dbl>, `Don't know/refused` <dbl>

relig_income |>
pivot_longer(cols = -religion,

names_to = "income",
values_to = "count")

A tibble: 180 x 3
religion income count
<chr> <chr> <dbl>

1 Agnostic <$10k 27
2 Agnostic $10-20k 34
3 Agnostic $20-30k 60
4 Agnostic $30-40k 81
5 Agnostic $40-50k 76
6 Agnostic $50-75k 137
7 Agnostic $75-100k 122
8 Agnostic $100-150k 109
9 Agnostic >150k 84

10 Agnostic Don't know/refused 96
11 Atheist <$10k 12
12 Atheist $10-20k 27
13 Atheist $20-30k 37
14 Atheist $30-40k 52
15 Atheist $40-50k 35
16 Atheist $50-75k 70
17 Atheist $75-100k 73
18 Atheist $100-150k 59
19 Atheist >150k 74
20 Atheist Don't know/refused 76
21 Buddhist <$10k 27
22 Buddhist $10-20k 21
23 Buddhist $20-30k 30
24 Buddhist $30-40k 34
25 Buddhist $40-50k 33
26 Buddhist $50-75k 58
27 Buddhist $75-100k 62

Another example…
> billboard

artist track date.entered wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8 wk9
2 Pac Baby Don't Cry (Keep... 2000-02-26 87 82 72 77 87 94 99 NA NA

2Ge+her The Hardest Part Of ... 2000-09-02 91 87 92 NA NA NA NA NA NA
3 Doors Down Kryptonite 2000-04-08 81 70 68 67 66 57 54 53 51
3 Doors Down Loser 2000-10-21 76 76 72 69 67 65 55 59 62

504 Boyz Wobble Wobble 2000-04-15 57 34 25 17 17 31 36 49 53
98^0 Give Me Just One Nig... 2000-08-19 51 39 34 26 26 19 2 2 3

A*Teens Dancing Queen 2000-07-08 97 97 96 95 100 NA NA NA NA
Aaliyah I Don't Wanna 2000-01-29 84 62 51 41 38 35 35 38 38
Aaliyah Try Again 2000-03-18 59 53 38 28 21 18 16 14 12

Adams, Yolanda Open My Heart 2000-08-26 76 76 74 69 68 67 61 58 57
Adkins, Trace More 2000-04-29 84 84 75 73 73 69 68 65 73
Alice Deejay Better Off Alone 2000-04-08 79 65 53 48 45 36 34 29 27
Allan, Gary Smoke Rings In The D... 2000-01-22 80 78 76 77 92 NA NA NA NA

Amber Sexual 1999-07-17 99 99 96 96 100 93 93 96 NA
Anastacia I'm Outta Love 2000-04-01 92 NA NA 95 NA NA NA NA NA

Anthony, Marc My Baby You 2000-09-16 82 76 76 70 82 81 74 80 76
Anthony, Marc You Sang To Me 2000-02-26 77 54 50 43 30 27 21 18 15

Avant My First Love 2000-11-04 70 62 56 43 39 33 26 26 26
Avant Separated 2000-04-29 62 32 30 23 26 30 35 32 32
BBMak Back Here 2000-04-29 99 86 60 52 38 34 28 21 18

Badu, Erkyah Bag Lady 2000-08-19 67 53 42 41 48 42 34 6 9
Baha Men Who Let The Dogs Out 2000-07-22 99 92 85 76 65 54 61 58 54

Beenie Man Girls Dem Sugar 2000-10-21 72 72 63 56 62 63 54 60 69
Before Dark Monica 2000-05-20 95 87 80 80 77 87 91 91 100
Bega, Lou Tricky Tricky 2000-01-29 75 74 87 NA NA NA NA NA NA

Big Punisher It's So Hard 2000-04-22 96 87 75 79 81 81 76 76 78
Black Rob Whoa! 2000-03-04 78 59 53 52 47 46 43 47 47

Black, Clint Been There 2000-02-19 87 73 62 58 58 57 51 47 44

> billboard |>
> pivot_longer(starts_with("wk"),
> names_to = "week",
> values_to = "chart_position")
A tibble: 24,092 × 5
artist track date.entered week chart_position
<chr> <chr> <date> <chr> <dbl>

1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk1 87
2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82
3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72
4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77
5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87
6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk6 94
7 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk7 99
8 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk8 NA
9 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk9 NA

10 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk10 NA

> billboard |>
> pivot_longer(starts_with("wk"),
> names_to = "week",
> values_to = "chart_position") |>
> mutate(week = parse_number(week))
A tibble: 24,092 × 5

artist track date.entered week chart_position
<chr> <chr> <date> <chr> <dbl>

1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk1 87
2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82
3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72
4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77
5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87
6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk6 94
7 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk7 99
8 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk8 NA
9 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk9 NA

10 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk10 NA

> billboard |>
> pivot_longer(starts_with("wk"),
> names_to = "week",
> values_to = "chart_position",
> values_drop_na = TRUE) |>
> mutate(week = parse_number(week))
A tibble: 5,307 × 5
artist track date.entered week chart_position
<chr> <chr> <date> <dbl> <dbl>

1 2 Pac Baby Don't Cry (Keep... 2000-02-26 1 87
2 2 Pac Baby Don't Cry (Keep... 2000-02-26 2 82
3 2 Pac Baby Don't Cry (Keep... 2000-02-26 3 72
4 2 Pac Baby Don't Cry (Keep... 2000-02-26 4 77
5 2 Pac Baby Don't Cry (Keep... 2000-02-26 5 87
6 2 Pac Baby Don't Cry (Keep... 2000-02-26 6 94
7 2 Pac Baby Don't Cry (Keep... 2000-02-26 7 99
8 2Ge+her The Hardest Part Of ... 2000-09-02 1 91
9 2Ge+her The Hardest Part Of ... 2000-09-02 2 87

10 2Ge+her The Hardest Part Of ... 2000-09-02 3 92

> longer <- billboard |>
> pivot_longer(starts_with("wk"),
> names_to = "week",
> values_to = "chart_position",
> values_drop_na = TRUE) |>
> mutate(week = parse_number(week))

From LONG to WIDE with pivot_wider

Suppose we already have our data in LONG format…
artist track date.entered week chart_position
2 Pac Baby Don't 2000-02-26 1 87
2 Pac Baby Don't 2000-02-26 2 82
2 Pac Baby Don't 2000-02-26 3 72
2 Pac Baby Don't 2000-02-26 4 77
2 Pac Baby Don't 2000-02-26 5 87
2 Pac Baby Don't 2000-02-26 6 94
2 Pac Baby Don't 2000-02-26 7 99
2Ge+her The Hardest 2000-09-02 1 91
2Ge+her The Hardest 2000-09-02 2 87
2Ge+her The Hardest 2000-09-02 3 92
3 Doors Down Kryptonite 2000-04-08 1 81
3 Doors Down Kryptonite 2000-04-08 2 70
3 Doors Down Kryptonite 2000-04-08 3 68
3 Doors Down Kryptonite 2000-04-08 4 67
3 Doors Down Kryptonite 2000-04-08 5 66
3 Doors Down Kryptonite 2000-04-08 6 57
3 Doors Down Kryptonite 2000-04-08 7 54
3 Doors Down Kryptonite 2000-04-08 8 53
3 Doors Down Kryptonite 2000-04-08 9 51
3 Doors Down Kryptonite 2000-04-08 10 51
3 Doors Down Kryptonite 2000-04-08 11 51
3 Doors Down Kryptonite 2000-04-08 12 51
3 Doors Down Kryptonite 2000-04-08 13 47
3 Doors Down Kryptonite 2000-04-08 14 44
3 Doors Down Kryptonite 2000-04-08 15 38
3 Doors Down Kryptonite 2000-04-08 16 28
3 Doors Down Kryptonite 2000-04-08 17 22
3 Doors Down Kryptonite 2000-04-08 18 18
3 Doors Down Kryptonite 2000-04-08 19 18
3 Doors Down Kryptonite 2000-04-08 20 14
3 Doors Down Kryptonite 2000-04-08 21 12
3 Doors Down Kryptonite 2000-04-08 22 7
3 Doors Down Kryptonite 2000-04-08 23 6
3 Doors Down Kryptonite 2000-04-08 24 6
3 Doors Down Kryptonite 2000-04-08 25 6
3 Doors Down Kryptonite 2000-04-08 26 5

Practical: pivoting between LONG and WIDE

1. Reshape the fish_encounters dataset to
WIDE format, such that each column
represents a different monitoring station. After
reshaping, is this dataset ‘tidy’? Why?

2. Reshape the world_bank_pop dataset to
LONG format, such that it contains three
columns: country, indicator, and year.

3. (If time) Reshape the table2 dataset such that
there is a separate column for ‘cases’ and
‘population’.

f) Grouping and summarising data

Note the differences with mutate

For example, calculate the mean and standard
deviation of a column:

> mtcars |>
+ summarise(mean = mean(wt),
+ sd = sd(wt))

mean sd
1 3.21725 0.9784574

As with mutate, we can have multiple expressions,
separated by commas.

Grouping data with group_by

We often want to calculate summaries for
subgroups in our data.

> # Average fuel efficiency by number
> # of cylinders?
> mtcars |>
+ group_by(cyl) |>
+ summarise(efficiency = mean(mpg))
A tibble: 3 x 2

cyl efficiency
<dbl> <dbl>

4 26.66364
6 19.74286
8 15.10000

Note that, once you define the grouping, all
subsequent operations to be grouped.

For example, mutate:

> mtcars |>
+ group_by(cyl) |>
+ mutate(max = max(mpg))

This will calculate the maximum per group.

Phew, that was a lot…

1. Alternative packages
2. Pipes
3. Essential data manipulation tasks

a) Select columns or rows
b) Sorting a dataset
c) Creating or modifying columns
d) Combining datasets
e) Reshaping a dataset
f) Grouping and summarising data

Recoding variables…

Recoding with if_else and case_when
Two functions that solve many common data cleaning tasks.

> starwars |>
+ mutate(weight = if_else(mass > 80,
+ "Heavy",
+ "Not heavy")) |>
+ select(mass, weight)
A tibble: 87 × 2

mass weight
<dbl> <chr>

1 77 Not heavy
2 75 Not heavy
3 32 Not heavy
4 136 Heavy
5 49 Not heavy
6 120 Heavy
7 75 Not heavy
8 32 Not heavy
9 84 Heavy

10 77 Not heavy
… with 77 more rows

However, if you’re creating a binary indicator
(TRUE/FALSE), there’s a simpler option:

> starwars |>
> mutate(heavy = mass > 80) |>
> select(mass, heavy)
A tibble: 87 × 2

mass heavy
<dbl> <lgl>

1 77 FALSE
2 75 FALSE
3 32 FALSE
4 136 TRUE
5 49 FALSE
6 120 TRUE
7 75 FALSE
8 32 FALSE
9 84 TRUE

10 77 FALSE
… with 77 more rows

case_when

To evaluate multiple conditions in order.

Bonus: tidylog

cran.r-project.org/package=tidylog

library(tidyverse)
library(tidylog, warn.conflicts = FALSE)

filtered <- filter(mtcars, cyl == 4)

merged <- left_join(band_members,
band_instruments,
by = "name")

Demonstration

https://cran.r-project.org/package=tidylog

