Advanced R

Session overview

1. Efficient iteration with purrr

2. Programming with data frames
3. Quarto and tables

4. Regular expressions

5. Going further

»

“Don, we need to scream.

Efficient iteration

In Session 2, we introduced loops as a way of repeatedly
manipulating an ‘iterable’ object, like a vector or a list.

age <- c(28, 55, 19, 73, 41)
age_sq <- vector(mode = "numeric",
length = 5)

for (i in 1:1length(age)) %

age_sql[i] <- age[i]”"2
£

| also said that you should almost never use loops.

So, what other options are there?

Vectorised functions
Many functions in R are ‘vectorised..

They take a vector as input, and return a vector (or single
value) as the output. For example:

age <- c(28, 55, 19, 73, 41)

Apply a function to each element
sqrt(age)

Apply a function to the entire vector
mean (age)

Where possible, use vectorised functions.

Functional programming

“A functional is a function that takes a function as
an input and returns a vector as an output.”’

https://adv-r.hadley.nz/functionals.html

Given a sequence of things, apply a function to each
element.

https://adv-r.hadley.nz/functionals.html

f <- function(x) x"2

- £(2)
map(3 , f)-— £(3)
5 -— £(5)

f <- function(x) x"2

- £(2)
map(3 , f)-— £(3)
5 -— £(5)

WEe'll consider two approaches:

e The apply family (base R)
e The purrr package.

25

The apply family

A group of functions for applying functions to vectors,

lists, matrices and, arrays:

apply ()
lapply ()
sapply ()
vapply ()
mapply ()
rapply ()

(I forget what they all do).

lapply

Apply a function to each element in a vector or list.

> X <' C(2, 5, 31 9)
> lapply(x, sqrt)
[[2]]

[1] 1.414214

[[2]]
[1] 2.236068

[[3]1]
[1] 1.732051

[[4]]
[1] 3

Example: Convert strings to uppercase

> people <- list("Alice",

S "BOb“,

> "Charlie")

> people_upper <- lapply(people, toupper)
> people_upper

[[1]]

[1] "ALICE"

[[2]]

[1] IIBOBII

[[3]]

[1] "CHARLIE"

Example: Read a folder of CSV files

V V VYV VYV VYVYV

library(tidyverse)
library(fs)

files <- dir_1ls(glob = "%.csv")
lapply(files, read_csv)

Or with the pipe
files |>
lapply(read_csv)

apply

Apply a function to a matrix or data frame.

> m <- matrix(sample(1:100, 9), ncol = 3)
> m
[,1]1 [,2] [,3]
[1,] 63 72 88
[2,] 38 30 97
[3,] 21 35 10

> apply(m, 1, mean)
[1] 74.33333 55.00000 22.00000

> apply(m, 2, mean)
[1] 40.66667 45.66667 65.00000

The MARGIN argument controls whether to apply the function
totherows (1), columns (2)orboth(c(1, 2)).

purrr

A modern
replacement for
the apply family.

“purrr enhances R’s functional programming toolkit
by providing a complete and consistent set of tools

for working with functions and vectors”.

https://purrr.tidyverse.org

(It's my favourite thing about R).

https://purrr.tidyverse.org

Your vector or list

123456
+ —

¥ ¥

SRR

Your function

-

Result

map
map applies a function to each element in a vector or list.
map(list, function)

e map takes a vector or list as input.

e By default, map returns a list (like lapply), but we
can changes this.

Examples

> library(tidyverse)
> x <- c(5, 11, 21)
> map(x, sqrt)

[[1]]

[1] 2.236068

[[2]]
[1] 3.316625

[[3]1]
[1] 4.582576

Examples

add_three <- function %
X + 3

§

x <- c(5, 11, 21)

map(x, add_three)

[[1]1]

[1] 8

V V V V V

[[2]]
[1] 14

[[3]]
[1] 24

Three features of map ()

1. We can return the results in different formats.
2. We can use temporary functions.
3. We can transform the results.

1. Returning results in different formats

map () returns a list, but we have other options.

Syntax

map ()

map_1gl()
map_int ()
map_dbl ()
map_chzr ()

Return format

list

logical vector
integer vector
double vector

character vector

Examples

add_three <- function {
X + 3
§
x <- c(5, 11, 21)
map_dbl (x, add_three)
1] 8 14 24

—m YV V V V V

2. Temporary functions

map can be used with existing functions:

> cube <- function(x) x”/3
> map_dbl(1:5, cube)
[1] 1 8 27 64 125

2. Temporary functions

map can be used with existing functions:

> cube <- function(x) x”/3
> map_dbl(1:5, cube)
[1] 1 8 27 64 125

But we can also use temporary functions:

> map_dbl(1:5, \(x) x"3)
[1] 1 8 27 64 125

> map_chr(c("morning", "evening"),
> \(x) paste("Good", x))
[1] "Good morning"

[2] "Good evening"

Syntax for temporary functions:

map(list, \(x) x + 1)
map(list, \(thing) thing % 2)

Or for a function spanning multiple lines:

map (list, \(x) %
if (!is.numeric(x)) 1
stop("Input must be numeric")

§

return(x”2)

£)

3. Transforming the results

We often need to work with lists of data frames, e.g.,

List all CSV files in the current directory
dir_ls(glob = "x.csv") [>
map (read_csv) # Import each file as a
data frame

But then what? Suppose we want to combine the list of
data frames into a single data frame.

For this we can use:

list rbind Combines elements into a data frame by
row-binding them together.

list cbind Combines elements into a data frame by
column-binding them together.

> dir_1s() [>
> map(read_csv) |>
> list _rbind()

Use the names_to argument to retain the element
names.

Demonstration

eoe < purrr »
Name

~ 23 air_pollution
Barking NO2.xIsm

Barking PM25.xism
Barnet NO2.xIsm

Barnet PM25.xIsm

Bexley NO2.xism

Bexley PM25.xIsm

Brent NO2.xism

Brent PM25.xlsm

Bromley NO2.xism
Bromley PM25.xIsm
Camden NO2.xlsm
Camden PM25.xlsm

; City of London NO2.xism
City of London PM25.xlsm
Croydon NO2.xism
Croydon PM25.xism
Ealing NO2.xism

Ealing PM25.xIsm

Enfield NO2.xism

Enfield PM25.xIsm
Greenwich NO2.xIsm
Greenwich PM25.xIsm
Hackney NO2.xism
Hackney PM25.xlsm
Hammersmith and Fulham NO2.xism
Hammersmith and Fulham PM25.xlsm
Haringey NO2.xism
Haringey PM25.xism
Harrow NO2.xIsm

Harrow PM25.xIsm
Havering NO2.xlsm
Havering PM25.xism
Hillingdon NO2.xism
Hillingdon PM25.xIsm
Hounslow NO2.xism

. Islington NO2.xism

8; Islington PM25.xism

NG NC I

CHCHCHCICHCI]

Our tasks:
[Import and clean each
spreadsheet.
(Combine 67 sheets into a
single data frame.

(d From the filename, extract
“Borough” and “measure”
(i.e., PM25 or NO2).

Extensions to map ()

You won't need these immediately, but useful to know.

map2 () Apply a function to two parallel inputs
Example: BMI calculation
map2 (weight, height, \(x, y) x / (y"2))

walk() Similar tomap (), but used for side effects
Example: Export a CSV for each patient

walk(patient_ids, write_csv)

map_1if() Apply a function conditionally
Example: Square root for numbers only

map_if(values, is.numeric, sqrt)

See the package index for more:
https://purrr.tidyverse.org/reference/index.html

https://purrr.tidyverse.org/reference/index.html

Where to learn more?

1. Read the “Iteration” chapter in “R for Data Science’

https://rd4ds.hadley.nz/iteration.html

2. Read “Chapter 9: Functions” from Advanced R

https://adv-r.hadley.nz/functionals.html

3. Watch this video
https://www.youtube.com/watch?v=EGAs7zuRutY

= % Youlube O U [

N)
m {purrr}1.0
ﬂi.-; Hadley Wickham

https://r4ds.hadley.nz/iteration.html
https://adv-r.hadley.nz/functionals.html
https://www.youtube.com/watch?v=EGAs7zuRutY

Wrapping up

¢ purrr is a powerful tool for manipulating lists and
vectors.

¢ |t's an advanced topic; you don’t need it.
¢ |t has redefined how | use R.

Everything is a list.

library(tidyverse)
library(broom)
library(palmerpenguins)
library(tinytable)

penguins |>
group_split(species) |>

map(\ (d) 1%
Im(body_mass_g ~ bill_length_mm,
data = d) [>

tidy(conf.int = TRUE) |>
mutate(group = d$species[1])

o>
list_rbind() |>
tt(O)

Split data frame by ‘species’ to produce a list of data frames
Fit a model for each group
Extract the coefficients from each model into list of data frames

Combine the coefficients from all models into a single data frame

v A e

Create a table with the coefficients

Practical

	Efficient iteration

