
Advanced R

Session overview
1. Efficient iteration with purrr

2. Programming with data frames

3. Quarto and tables

4. Regular expressions

5. Going further

Efficient iteration

In Session 2, we introduced loops as a way of repeatedly
manipulating an ‘iterable’ object, like a vector or a list.

age <- c(28, 55, 19, 73, 41)
age_sq <- vector(mode = "numeric",

length = 5)

for (i in 1:length(age)) {
age_sq[i] <- age[i]^2

}

I also said that you should almost never use loops.

So, what other options are there?

Vectorised functions
Many functions in R are ‘vectorised’.

They take a vector as input, and return a vector (or single
value) as the output. For example:

age <- c(28, 55, 19, 73, 41)

Apply a function to each element
sqrt(age)

Apply a function to the entire vector
mean(age)

Where possible, use vectorised functions.

Functional programming

“A functional is a function that takes a function as
an input and returns a vector as an output.”

https://adv-r.hadley.nz/functionals.html

Given a sequence of things, apply a function to each
element.

https://adv-r.hadley.nz/functionals.html

map(, f) f(3) 93

f(2) 42

f(5) 255

f <- function(x) x^2

We’ll consider two approaches:

• The apply family (base R)
• The purrr package.

map(, f) f(3) 93

f(2) 42

f(5) 255

f <- function(x) x^2

We’ll consider two approaches:

• The apply family (base R)
• The purrr package.

The apply family

A group of functions for applying functions to vectors,
lists, matrices and, arrays:

• apply()
• lapply()
• sapply()
• vapply()
• mapply()
• rapply()

(I forget what they all do).

lapply
Apply a function to each element in a vector or list.

> x <- c(2, 5, 3, 9)
> lapply(x, sqrt)
[[1]]
[1] 1.414214

[[2]]
[1] 2.236068

[[3]]
[1] 1.732051

[[4]]
[1] 3

Example: Convert strings to uppercase

> people <- list("Alice",
> "Bob",
> "Charlie")
> people_upper <- lapply(people, toupper)

> people_upper
[[1]]
[1] "ALICE"

[[2]]
[1] "BOB"

[[3]]
[1] "CHARLIE"

Example: Read a folder of CSV files

> library(tidyverse)
> library(fs)
>
> files <- dir_ls(glob = "*.csv")
> lapply(files, read_csv)
>
> # Or with the pipe
> files |>
> lapply(read_csv)

apply
Apply a function to a matrix or data frame.

> m <- matrix(sample(1:100, 9), ncol = 3)
> m

[,1] [,2] [,3]
[1,] 63 72 88
[2,] 38 30 97
[3,] 21 35 10

> apply(m, 1, mean)
[1] 74.33333 55.00000 22.00000

> apply(m, 2, mean)
[1] 40.66667 45.66667 65.00000

The MARGIN argument controls whether to apply the function
to the rows (1), columns (2) or both (c(1, 2)).

purrr

A modern
replacement for
the apply family.

“purrr enhances R’s functional programming toolkit
by providing a complete and consistent set of tools
for working with functions and vectors”.

https://purrr.tidyverse.org

(It’s my favourite thing about R).

https://purrr.tidyverse.org

Your vector or list

+

Your func�on

Result

map
map applies a function to each element in a vector or list.

map(list, function)
• map takes a vector or list as input.
• By default, map returns a list (like lapply), but we
can changes this.

Examples

> library(tidyverse)
> x <- c(5, 11, 21)
> map(x, sqrt)
[[1]]
[1] 2.236068

[[2]]
[1] 3.316625

[[3]]
[1] 4.582576

Examples

> add_three <- function {
> x + 3
> }
> x <- c(5, 11, 21)
> map(x, add_three)
[[1]]
[1] 8

[[2]]
[1] 14

[[3]]
[1] 24

Three features of map()
1. We can return the results in different formats.
2. We can use temporary functions.
3. We can transform the results.

1. Returning results in different formats
map() returns a list, but we have other options.

Syntax Return format

map() list

map_lgl() logical vector

map_int() integer vector

map_dbl() double vector

map_chr() character vector

Examples

> add_three <- function {
> x + 3
> }
> x <- c(5, 11, 21)
> map_dbl(x, add_three)
[1] 8 14 24

2. Temporary functions
map can be used with existing functions:

> cube <- function(x) x^3
> map_dbl(1:5, cube)
[1] 1 8 27 64 125

But we can also use temporary functions:

> map_dbl(1:5, \(x) x^3)
[1] 1 8 27 64 125

> map_chr(c("morning", "evening"),
> \(x) paste("Good", x))
[1] "Good morning"
[2] "Good evening"

2. Temporary functions
map can be used with existing functions:

> cube <- function(x) x^3
> map_dbl(1:5, cube)
[1] 1 8 27 64 125

But we can also use temporary functions:

> map_dbl(1:5, \(x) x^3)
[1] 1 8 27 64 125

> map_chr(c("morning", "evening"),
> \(x) paste("Good", x))
[1] "Good morning"
[2] "Good evening"

Syntax for temporary functions:

map(list, \(x) x + 1)
map(list, \(thing) thing * 2)

Or for a function spanning multiple lines:

map(list, \(x) {
if (!is.numeric(x)) {

stop("Input must be numeric")
}
return(x^2)

})

3. Transforming the results

We often need to work with lists of data frames, e.g.,

List all CSV files in the current directory
dir_ls(glob = "*.csv") |>

map(read_csv) # Import each file as a
data frame

But then what? Suppose we want to combine the list of
data frames into a single data frame.

For this we can use:

list_rbind Combines elements into a data frame by
row‐binding them together.

list_cbind Combines elements into a data frame by
column‐binding them together.

> dir_ls() |>
> map(read_csv) |>
> list_rbind()

Use the names_to argument to retain the element
names.

Demonstration

Our tasks:
o Import and clean each
spreadsheet.

o Combine 67 sheets into a
single data frame.

o From the filename, extract
“Borough” and “measure”
(i.e., PM25 or NO2).

Extensions to map()
You won’t need these immediately, but useful to know.

map2() Apply a function to two parallel inputs
Example: BMI calculation
map2(weight, height, \(x, y) x / (y^2))

walk() Similar to map(), but used for side effects
Example: Export a CSV for each patient
walk(patient_ids, write_csv)

map_if() Apply a function conditionally
Example: Square root for numbers only
map_if(values, is.numeric, sqrt)

See the package index for more:
https://purrr.tidyverse.org/reference/index.html

https://purrr.tidyverse.org/reference/index.html

Where to learn more?
1. Read the “Iteration” chapter in “R for Data Science”

https://r4ds.hadley.nz/iteration.html

2. Read “Chapter 9: Functions” from Advanced R
https://adv-r.hadley.nz/functionals.html

3. Watch this video
https://www.youtube.com/watch?v=EGAs7zuRutY

https://r4ds.hadley.nz/iteration.html
https://adv-r.hadley.nz/functionals.html
https://www.youtube.com/watch?v=EGAs7zuRutY

Wrapping up
• purrr is a powerful tool for manipulating lists and
vectors.

• It’s an advanced topic; you don’t need it.
• It has redefined how I use R.

Everything is a list.

library(tidyverse)
library(broom)
library(palmerpenguins)
library(tinytable)

penguins |>
group_split(species) |>
map(\(d) {

lm(body_mass_g ~ bill_length_mm,
data = d) |>
tidy(conf.int = TRUE) |>
mutate(group = d$species[1])

}) |>
list_rbind() |>
tt()

1. Split data frame by ‘species’ to produce a list of data frames

2. Fit a model for each group

3. Extract the coefficients from each model into list of data frames

4. Combine the coefficients from all models into a single data frame

5. Create a table with the coefficients

Practical

	Efficient iteration

