
Programming with data frames



I want to introduce two extensions to the ‘data
manipulation’ material from Session 2:

1. Applying functions ‘across’ columns with across
and c_across .

2. Programming with data frames using tidyeval.



In Session 2, we used mutate to create or modify
columns:

mtcars |>
mutate(wt_kg = (wt * 1000) * 0.454,

hp_per_kg = hp / (wt_kg))

And summarise to summarise columns:

mtcars |>
group_by(cyl) |>
summarise(mpg = mean(mpg))

But what if we want to manipulate many columns at once?



We could do this with lots of typing:

data |>
summarise(
x1 = mean(x2),
x2 = mean(x2),
x3 = mean(x3),
x4 = mean(x4),
x5 = mean(x5)

)

But there’s a better way:

data |>
summarise(across(c(x1, x2, x3), mean))



across
across is used inside mutate or summarise to apply
a function to multiple columns.

across(.cols, .funs, .names)
It takes three arguments:

.cols The columns we want to manipulate.
.fns The functions we want to apply.

.names The names of the new columns.

Let’s see some examples…



Apply the mean function to x1 , x2 , and x3 :

data |>
summarise(across(c(x1, x2, x3), mean))

Note that we’re selecting columns using c().

Apply mean to all variables between x1 and x3 :

data |>
summarise(across(x1:x3), mean))

Use names to check ordering.



Apply the mean function to x1 , x2 , and x3 :

data |>
summarise(across(c(x1, x2, x3), mean))

Note that we’re selecting columns using c().

Apply mean to all variables between x1 and x3 :

data |>
summarise(across(x1:x3), mean))

Use names to check ordering.



Apply mean to columns starting with “x”:

data |>
summarise(
across(starts_with("x"), mean)

)

Apply mean to columns containing “wk_”:

data |>
summarise(
across(matches("wk_"), mean)

)



Apply mean to columns starting with “x”:

data |>
summarise(
across(starts_with("x"), mean)

)

Apply mean to columns containing “wk_”:

data |>
summarise(
across(matches("wk_"), mean)

)



Apply mean to every column:

data |>
summarise(across(everything(), mean))

To learn more, click here and here.

https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html
https://dplyr.tidyverse.org/articles/programming.html


We can apply multiple functions too:

> data |>
> summarise(
> across(
> .cols = x1:x3,
> .fns = list(
> mean = mean,
> sd = sd,
> min = min
> )))

x1_mean x1_sd x1_min x2_mean x2_sd
1 3.21725 0.9784574 1.513 20.09062 6.026948

x2_min x3_mean x3_sd x3_min
10.4 6.1875 1.785922 4



Note that there are easier ways of making tables of
summary statistics, covered later this session.

library(gtsummary)
data |> tbl_summary(include = x1:x3)

See www.danieldsjoberg.com/gtsummary for details.

https://www.danieldsjoberg.com/gtsummary/


Applying functions conditionally
Use where to apply a function to all columns matching a
condition.

Calculate the mean of all numeric columns:

data |>
summarise(
across(where(is.numeric), mean)

)

Make all character columns uppercase:

data |>
summarise(
across(where(is.character), toupper)

)



Rowwise calculations with c_across
We often need to do calculations across the rows. For
example, calculating an individual’s total score:

> scores
participant item_1 item_2 item_3 item_4

1 A 2 2 2 1
2 B 2 1 0 0
3 C 2 1 3 1
4 D 1 1 1 2

We can use standard operators (e.g., + ) but this becomes
unwieldy with many columns:

scores |>
mutate(
total = item_1 + item_2 + item_3 + item_4

)



We could try:

scores |>
mutate(

total = sum(c(item_1, item_2, item_3, item_4))
)

But this doesn’t work because it sums all the values at
once, rather than row‐wise:

participant item_1 item_2 item_3 item_4 total
1 A 2 2 2 1 22
2 B 2 1 0 0 22
3 C 2 1 3 1 22
4 D 1 1 1 2 22



Instead, we need to calculate the summary by row.
To do this, we use rowwise():

scores |>
rowwise() |>
mutate(

total = sum(c(item_1, item_2, item_3, item_4))
)

participant item_1 item_2 item_3 item_4 total
<chr> <int> <int> <int> <int> <int>

1 A 2 2 2 1 7
2 B 2 1 0 0 3
3 C 2 1 3 1 7
4 D 1 1 1 2 5

(This is just like group_by.)



But what if we have many columns? Use c_across:

scores |>
rowwise() |>
mutate(

total = sum(c_across(starts_with("item_")))
)

participant item_1 item_2 item_3 item_4 total
<chr> <int> <int> <int> <int> <int>

1 A 2 2 2 1 7
2 B 2 1 0 0 3
3 C 2 1 3 1 7
4 D 1 1 1 2 5

Using c_across allows us to use all the tidyselect
tools (e.g., starts_with , matches , etc.



across is an advanced topic.

You don’t need it right away.

Just remember it’s there when you need it.

To learn more:
• dplyr.tidyverse.org/articles/programming
• adv-r.hadley.nz/metaprogramming

https://dplyr.tidyverse.org/articles/programming.html
https://adv-r.hadley.nz/metaprogramming.html


Programming with data frames
It’s a good idea to write functions to automate parts of your
data cleaning pipelines. However, it isn’t so straightforward.

> my_summary <- function(d, var) {
> d |>
> group_by(var) |>
> summarise(across(where(is.numeric), mean))
> }
>
> my_summary(penguins, species)
Error in `group_by()`:
! Must group by variables found in `.data`.
Column `var` is not found.

• group_by(var) treats var as a column name rather
than the variable being passed.

• This results in group_by() searching for a column
literally named “var”, which doesn’t exist in the dataset.



The embrace operator {{}}
To pass column names as arguments in tidyverse functions, we
can use {{}} to ‘wrap’ function arguments.

> my_summary <- function(d, var) {
> d |>
> group_by({{var}}) |>
> summarise(across(where(is.numeric),
> mean))
> }
> my_summary(penguins, species)

• {{}} tells group_by() to treat var as a column name
rather than a literal string.

• This is an example of tidy evaluation, where function
arguments are unquoted and evaluated in the correct
context.



Using := to dynamically create columns

Another useful tidyeval feature is := , which allows
dynamic column creation based on user input.

add_log <- function(d, .old, .new) {
d |>
mutate({{.new}} := log({{.old}}))

}

penguins |>
add_log(bill_depth_mm, bill_depth_sqrt)

Here, := is used to assign a dynamically named column
within mutate() , allowing flexible function creation.



Note that you can construct new column names
using quotation:

add_log <- function(d, .col) {
d |>
mutate("{{.col}}_sq" := {{.col}}^2)

}



Wrapping up
• tidyverse functions like group_by use non‐standard

evaluation (NSE). They expect unquoted column names
rather than standard function arguments.

• Directly passing arguments causes errors because
functions look for a literal column name rather than
substituting the argument.

• The embrace operator {{}} allows function arguments to
be correctly interpreted within tidyverse functions.

This is part of the tidy evaluation framework, powered by the
rlang package. To learn more:

• The Metaprogramming section of Advanced R

• Programming with dplyr

https://rlang.r-lib.org/reference/embrace-operator.html
https://adv-r.hadley.nz/metaprogramming.html
https://dplyr.tidyverse.org/articles/programming.html


Practical


	Programming with data frames

