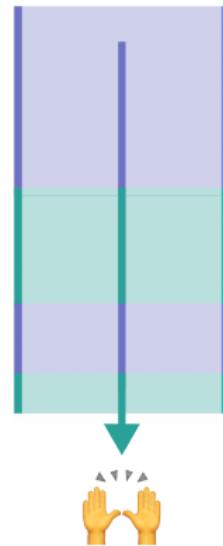


Dynamic reporting with Quarto



Analysis

Writing

Analysis + Writing

Literate programming

*...a programming paradigm introduced by Donald Knuth in which a program is given as **an explanation of the program logic in a natural language**, such as English, **interspersed with snippets of source code**.*

— Wikipedia

The key point here is the **mixing** of text and code in a single document.

Literate programming


This brings many benefits:

- Reproducibility
- Efficiency
- Reduces human error (e.g. copy and paste).
- Combines code with documentation

Quarto is the successor to RMarkdown

Learn more @ <https://quarto.org>.

Artwork by @allison_horst

```
---
```

```
title: "My Quarto Report"
author: "Ewan Carr"
format: html
---
```

```
## Quarto
```

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see <<https://quarto.org>>.

This is a code chunk:

```
```{r}
library(tidyverse)
library(lme4)
```
```

You can add options to code chunks like this

```
```{r}
#| echo: false
df <- read_csv("raw_data.csv")
```
```

Markdown

- Markdown is an **easy-to-read, easy-to-write** plain text format.

<https://daringfireball.net/projects/markdown/>.

```
# Heading 1
```

```
## Heading 2
```

```
This is some **bold text**. This is *italics*.
```

- Quarto uses **Pandoc**, a piece of software that converts one markup format into another.

<http://pandoc.org/>

- With this, we can convert RMarkdown to Microsoft Word, PDF (via **LATEX**), HTML, PowerPoint, ePUB...

It's not just for documents.

- Papers
- Books
- Websites
- Presentations
- Documentation

<https://quarto.org/docs/guide/>
<https://quarto.org/docs/gallery>

It's not just for documents.

- Papers
- Books
- Websites
- Presentations
- Documentation

<https://quarto.org/docs/guide/>
<https://quarto.org/docs/gallery>

Tip: Write your data cleaning scripts in Quarto.

And it's not just for R...

Python for Data Analysis, 3E Blog

About the Open Edition

Chapters >

- Preface
- 1 Preliminaries
- 2 Python Language Basics, IPython, and Jupyter Notebooks
- 3 Built-In Data Structures, Functions, and Files
- 4 NumPy Basics: Arrays and Vectorized Computation
- 5 Getting Started with pandas
- 6 Data Loading, Storage, and File Formats
- 7 Data Cleaning and Preparation
- 8 Data Wrangling: Join, Combine, and Reshape

Python for Data Analysis, 3E

About the Open Edition

The upcoming 3rd edition of [Python for Data Analysis](#) is available as an "Open Access" HTML version on this site <https://wesmckinney.com/book> in addition to the usual print and e-book formats. This is currently an *Early Release* version and will undergo further technical editing and copy-editing before going to print in late August 2022. If you encounter any errata, [please report them here](#). [Pre-order a print copy now!](#)

In general, the content from this website may not be copied or reproduced. The code examples are MIT-licensed and can be found on [GitHub](#) or [Gitee](#) along with the supporting datasets.

If you find the online edition of the book useful, please consider [pre-ordering a paper or e-book copy](#) to support the author.

This web version of the book was created with the [Quarto publishing system](#).

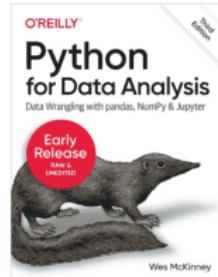


Table of contents

About the Open Edition

What's New in the 3rd Edition?

Update History

<https://wesmckinney.com/book/>

Demonstration!

1. Create a new document
2. Compiling ('knitting')
3. Markdown syntax
4. Code chunks and inline code.
5. The visual editor
6. Figures
7. Chunk options
 - eval
 - echo
 - tbl-cap
8. Layout options
9. Citations

Publication-ready tables

Packages for creating tables

There are many options:

1. **tinytable**

<https://vincentarelbundock.github.io/tinytable>

2. **tabyl** from the **janitor** package

<https://sfirke.github.io/janitor/index.html>

3. **gt** and **gtsummary**

<https://gt.rstudio.com>

<https://www.danielssjoberg.com/gtsummary>

4. **table1**

<https://github.com/benjaminrich/table1>

You could do this manually...

```
> library(tidyverse)
> library(palmerpenguins)
> penguins |>
>   group_by(species) |>
>   summarise(
>     across(where(is.numeric),
>           .fns = list(
>             mean = \((x) mean(x, na.rm = TRUE),
>             sd = \((x) sd(x, na.rm = TRUE)
>           )
>         )
>       )
>     )
# A tibble: 3 × 11
  species bill_length_mm_mean bill_length_mm_sd bill_depth_mm_mean
  <fct>          <dbl>           <dbl>           <dbl>
1 Adelie        38.8            2.66            18.3
2 Chinstrap     48.8            3.34            18.4
3 Gentoo        47.5            3.08            15.0
```

...but it's a lot of work.

```
> penguins |>
>   group_by(species) |>
>   summarise(
>     across(where(is.numeric),
>           .fns = list(
>             mean = \((x) mean(x, na.rm = TRUE),
>             sd = \((x) sd(x, na.rm = TRUE)
>           )
>         )
>       ) |>
>     pivot_longer(-species) |>
>     mutate(var = str_replace(name, "_mean$|_sd$", ""),
>           measure = if_else(str_detect(name, "_mean$"), "mean", "sd"))
>     select(-name) |>
>     pivot_wider(names_from = measure,
>                 values_from = value) |>
>     mutate(cell = make_cell(mean, sd)) |>
>     select(species, var, cell) |>
>     pivot_wider(names_from = species,
>                 values_from = cell)
var           Adelie        Chinstrap       Gentoo
<chr>        <glue>        <glue>        <glue>
1 bill_length_mm 38.8 [2.7]    48.8 [3.3]    47.5 [3.1]
2 bill_depth_mm  18.3 [1.2]    18.4 [1.1]    15.0 [1.0]
3 flipper_length_mm 190.0 [6.5] 195.8 [7.1]  217.2 [6.5]
4 body_mass_g    3700.7 [458.6] 3733.1 [384.3] 5076.0 [504.1]
5 year          2008.0 [0.8]   2008.0 [0.9]   2008.1 [0.8]
```

gtsummary

A flexible package for creating tables of summary statistics and regression models, building on the powerful **gt** package.

gtsummary 2.0.4 [Home](#) [Reference](#) [Articles](#) [News](#)

tbl_summary() tutorial

Source: vignettes/articles/tbl_summary.Rmd

On this page

[Introduction](#)

[Setup](#)

[Example data set](#)

[Basic Usage](#)

[Customize Output](#)

[Select Helpers](#)

[Multi-line Continuous
Summaries](#)

[Advanced Customization](#)

[Set Default Options with
Themes](#)

[Survey Data](#)

[Cross Tables](#)

Introduction

The `tbl_summary()` function calculates **descriptive statistics** for continuous, categorical, and dichotomous variables in **R**, and presents the results in a **beautiful, customizable summary table** ready for publication (for example, Table 1 or demographic tables).

This vignette will walk a reader through the `tbl_summary()` function, and the various functions available to modify and make additions to an existing table summary object.

Setup

Before going through the tutorial, install and load `(gtsummary)`.

```
# install.packages("gtsummary")
library(gtsummary)
```

I won't go into depth here; see documentation to learn more.

tbl_summary

```
penguins |>  
  select(species,  
          where(is.numeric)) |>  
 tbl_summary()
```

| Characteristic | N = 344 ⁷ |
|-------------------|----------------------|
| species | |
| Adelie | 152 (44%) |
| Chinstrap | 68 (20%) |
| Gentoo | 124 (36%) |
| bill_length_mm | 44.5 (39.2, 48.5) |
| Unknown | 2 |
| bill_depth_mm | 17.30 (15.60, 18.70) |
| Unknown | 2 |
| flipper_length_mm | 197 (190, 213) |
| Unknown | 2 |
| body_mass_g | 4,050 (3,550, 4,750) |
| Unknown | 2 |
| year | |
| 2007 | 110 (32%) |
| 2008 | 114 (33%) |
| 2009 | 120 (35%) |

⁷ n (%); Median (Q1, Q3)

tbl_summary

```
penguins |>  
  select(species, where(is.numeric)) |>  
 tbl_summary(by = species)
```

| Characteristic | Adelie
N = 152 ⁷ | Chinstrap
N = 68 ⁷ | Gentoo
N = 124 ⁷ |
|-------------------|--------------------------------|----------------------------------|--------------------------------|
| bill_length_mm | 38.8 (36.7, 40.8) | 49.6 (46.3, 51.2) | 47.3 (45.3, 49.6) |
| Unknown | 1 | 0 | 1 |
| bill_depth_mm | 18.40 (17.50, 19.00) | 18.45 (17.50, 19.40) | 15.00 (14.20, 15.70) |
| Unknown | 1 | 0 | 1 |
| flipper_length_mm | 190 (186, 195) | 196 (191, 201) | 216 (212, 221) |
| Unknown | 1 | 0 | 1 |
| body_mass_g | 3,700 (3,350, 4,000) | 3,700 (3,475, 3,950) | 5,000 (4,700, 5,500) |
| Unknown | 1 | 0 | 1 |
| year | | | |
| 2007 | 50 (33%) | 26 (38%) | 34 (27%) |
| 2008 | 50 (33%) | 18 (26%) | 46 (37%) |

tbl_summary

```
penguins |>
  select(species, where(is.numeric)) |>
 tbl_summary(by = species,
            label = list(bill_length_mm = "Bill length (mm)",
                          bill_depth_mm = "Bill depth (mm)"),
            missing_text = "Missing")
```

| Characteristic | Adelie
N = 152 ¹ | Chinstrap
N = 68 ¹ | Gentoo
N = 124 ¹ |
|-------------------|--------------------------------|----------------------------------|--------------------------------|
| Bill length (mm) | 38.8 (36.7, 40.8) | 49.6 (46.3, 51.2) | 47.3 (45.3, 49.6) |
| Missing | 1 | 0 | 1 |
| Bill depth (mm) | 18.40 (17.50, 19.00) | 18.45 (17.50, 19.40) | 15.00 (14.20, 15.70) |
| Missing | 1 | 0 | 1 |
| flipper_length_mm | 190 (186, 195) | 196 (191, 201) | 216 (212, 221) |
| Missing | 1 | 0 | 1 |
| body_mass_g | 3,700 (3,350, 4,000) | 3,700 (3,475, 3,950) | 5,000 (4,700, 5,500) |
| Missing | 1 | 0 | 1 |
| year | | | |

tabyl

`tabyl` is a function from the `janitor` package.

It's great for quick tables that don't require the heavy lifting of `tbl_summary`.

```
> library(janitor)
> penguins |>
>   tabyl(species)
species      n      percent
Adelie      152      0.4418605
Chinstrap   68       0.1976744
Gentoo      124      0.3604651
```

See this page to learn more.

Practical: Quarto and tables