Manipulating text with regular
expressions

OH NO! THE KILER

MUST HAVE FOLLOWED|

HER ON VACATION |
|

$)

BUT TO FIND THEM WE'D HAVE T0 SEARCH
THROUGH 200 MB OF EMAILS LOOKING FOR
SOMETHING FORMATTED LIKE AN ADDRESS!

/
7 i%-—-— 5 HOPELESS)!

B

T KnNOW REGUAR,
EXPRESSICONS.

X

Why are we covering this?

Regular expressions find patterns in strings
You're probably familiar with “Find & Replace” (e.g. Word).

It was a special pleasure to see things «
o t h e " blackened and changed. With the bras
with this great python spitting its ven:
the world, the blood pounded in his
were the hands of some amazing cond:
symphonies of blazing and burning to
tatters and charcoal ruins of history. '
helmet numbered 451 on his stolid hea
orange flame with the thought of wha

NI AR flicked the igniter and the house jumn

Ray Bradbury

Regular expressions find patterns in strings

Regular expressions are similar, but provide a powerful
language for specifying search patterns.

Regular expressions find patterns in strings

Regular expressions are similar, but provide a powerful
language for specifying search patterns.

For example:
\bt\w+ Match any word starting with “t”
\bla-z]{3}\b Match any three-letter word

Regular expressions find patterns in strings

Regular expressions are similar, but provide a powerful
language for specifying search patterns.

For example:

\bt\w+ Match any word starting with “t”
\bl[a-z]{3}\b Match any three-letter word

Regular expressions have many uses

e Check if a string variable conforms to a

particular format (e.g. email address or phone
number).

e Extract a substring from a longer string.

Getting started

We need two things:
1. A regular expression (‘pattern’);
2. Some text to search (‘target string’).

Getting started

We need two things:
1. A regular expression (‘pattern’);
2. Some text to search (‘target string’).

A regular expression can contain literal characters and
words (e.g. “the”), but there are many characters that have
special meanings.

For example,” to denote the start of a string, or $ to
denote the end.

We'll now look at some of these in more detail...

Regular expression concept 1: Character sets

We can use square brackets to create a character set.

[the] Match one of the included characters, t, h, e.

[eht] As above.
[e02] Match one of the characters e, 0, 2.

Regular expression concept 1: Character sets

We can use square brackets to create a character set.

[the] Match one of the included characters, t, h, e.

[eht] As above.
[e02] Match one of the characters e, 0, 2.

We can also specify ranges of characters to match.

[a-Z] Match a single character in the range a,
b, .. z.
[0-9] Match a single character in the range 0-9.

[a=d0-9] Match a single character in the range a, b,
o ELELES - B

Shorthand replacements are available for several common sets:

Expression Meaning

\d
\d

\w
\w

\s
\s

Any character
Digit
Not a digit

Word character
Not a word character

Whitespace character
Not a whitespace character

Equivalent to...
-

[0-9]
["\d]
[A-Za-z0-9]

[\t\r\n\f]

Regular expression concept 2: Repetition

We can repeat regular expressions:

151515 The character t repeated three times.
\w\w\w Any three word characters.

Regular expression concept 2: Repetition

We can repeat regular expressions:

151515 The character t repeated three times.
\w\w\w Any three word characters.

But we can also use shorthand to express repetition:

% Repeat preceding expression O or more times

+ Repeat preceding expression 1 or more times

{3} Repeat preceding expression exactly three
times.

The above examples could thus be expressed more
succinctly as t{3} and \w{31}.

Regular expression concept 3: Match groups

e Often, we want to extract the search pattern from a
longer string.

e We can use match groups to help with this.

A match group is denoted with parentheses:
(\d+) (a-z{1})

First Second
group group

Having specified our groups, we can refer to them in later
expressions at \ 1, \2, ..., \I.

You don't have to remember all these expressions.

1. Learn the core expressions

\d \W\S. [a-z] *, {3}

2. For simple regular expressions, try writing from
memory, make mistakes, get help, repeat...

3. For anything complicated, use a helper tool.

https://regex10l.com

https://regex101.com

Practical

Regular expressions in R

We're using stringr, part of the tidyverse:

Function What it does Result

str_detect Does the string contain TRUE / FALSE
this match?

str_count How many times does Count

str_locate

str_extract
str_match

str_replace

str_split

this match occur?
Where is this match
located (i.e. position)?
Extract the first match.

Extract all match groups.

Replace the first match.

Split the string at match.

Position [start, end];
numeric

The match.

The matched groups, if
they occur.

The original string, with
the match replaced.
Two strings.

str detect

str_detect checks whether a string contains a regular
expression, a returns a logical value (i.e TRUE or FALSE).

http://regex101.com

str detect

str_detect checks whether a string contains a regular
expression, a returns a logical value (i.e TRUE or FALSE).

> target <- "A long time ago in a galaxy far..."
> str_detect(target, "time")

[1] TRUE

> str_detect(target, "away")

[1] FALSE

> str_detect(target, "\\bl")

[1] TRUE

> str_detect(target, "\\bG")

[1] FALSE

> str_detect("2018-10-30", "M\\d{4:-\\d{i2:\\d{2%")
[1] TRUE

— If you get stuck, try it on regex101.com.

http://regex101.com

str match

str_match extracts matched groups from a string.

str match

str_match extracts matched groups from a string.

> names <- c("Luke Skywalker", "R2-D2",
> "Darth Vader")
> str _match(names, " (M\\w+).*")

str match

str_match extracts matched groups from a string.

> names <- c("Luke Skywalker", "R2-D2",
> "Darth Vader")

> str _match(names, " (M\\w+).x")

[1,] "Luke Skywalker" "Luke"

[2,] "R2-D2" "R2"

[3,] "Darth Vader" "Darth"

str match

str_match extracts matched groups from a string.

> names <- c("Luke Skywalker", "R2-D2",
> "Darth Vader")

> str _match(names, " (M\\w+).x")

[1,] "Luke Skywalker" "Luke"

[2,] "R2-D2" "R2"

[3,] "Darth Vader" "Darth"

> str_match(names, "(A[\\w-1+).%")
[1,] "Luke Skywalker" "Luke"

[2,] "R2-D2" "R2-D2"

[3,] "Darth Vader" "Darth"

> str_match(names, "(A[\\w-J+) *([\\w-]%x)")

[11] [,2] [,3]
[1,] "Luke Skywalker" "Luke" "Skywalker"
[2r] “R2'D2" “R2_D2II THT

[3,] "Darth Vader" "Darth" "Vader"

str_replace

str_replace replaces the pattern with another string.

> str_replace(names, "D", "G")

[1] "Luke Skywalker" "R2-G2" "Garth Vader"
> str_replace(names, "e", "!")

[1] "Luk! Skywalker" "R2-D2" "Darth Vad!zx"
> str_replace_all(names, "e", "!")

[1] "Luk! Skywalk!r" "R2-D2" "Darth Vad!r"

Where to go next...

Next steps

1. Practice, practice, practice

* Apply what you've learnt to a specific project.
® Recognise that things will take longer at first.

2. Learn your editor (e.g., RStudio, Positron, VS Code)

3. Familiarise yourself with the command line.
https://jeroenjanssens.com/dsatcl/

4. Learn version control with Git.

Learn package management with renv.

https://rstudio.github.io/renv/

6. Build pipelines with Make or targets.

hd

https://books.ropensci.org/targets/
7. Getinvolved in the community

https://rladies.org
https://posit.co/conference/
https://nhsrcommunity.com/conference24.html

https://jeroenjanssens.com/dsatcl/
https://rstudio.github.io/renv/
https://books.ropensci.org/targets/
https://rladies.org
https://posit.co/conference/
https://nhsrcommunity.com/conference24.html

	Manipulating text with regular expressions
	Where to go next…

