
Manipulating text with regular
expressions





Why are we covering this?



Regular expressions find patterns in strings
You’re probably familiar with “Find & Replace” (e.g. Word).



Regular expressions find patterns in strings
Regular expressions are similar, but provide a powerful
language for specifying search patterns.

For example:

Match any word starting with “t”
Match any three‐letter word

Regular expressions have many uses

• Check if a string variable conforms to a
particular format (e.g. email address or phone
number).

• Extract a substring from a longer string.



Regular expressions find patterns in strings
Regular expressions are similar, but provide a powerful
language for specifying search patterns.

For example:

Match any word starting with “t”
Match any three‐letter word

Regular expressions have many uses

• Check if a string variable conforms to a
particular format (e.g. email address or phone
number).

• Extract a substring from a longer string.



Regular expressions find patterns in strings
Regular expressions are similar, but provide a powerful
language for specifying search patterns.

For example:

Match any word starting with “t”
Match any three‐letter word

Regular expressions have many uses

• Check if a string variable conforms to a
particular format (e.g. email address or phone
number).

• Extract a substring from a longer string.



Getting started

We need two things:
1. A regular expression (‘pattern’);
2. Some text to search (‘target string’).

A regular expression can contain literal characters and
words (e.g. “the”), but there are many characters that have
special meanings.

For example, ̂ to denote the start of a string, or $ to
denote the end.

We’ll now look at some of these in more detail…



Getting started

We need two things:
1. A regular expression (‘pattern’);
2. Some text to search (‘target string’).

A regular expression can contain literal characters and
words (e.g. “the”), but there are many characters that have
special meanings.

For example, ̂ to denote the start of a string, or $ to
denote the end.

We’ll now look at some of these in more detail…



Regular expression concept 1: Character sets
We can use square brackets to create a character set.

Match one of the included characters, t , h , e .
As above.
Match one of the characters e , 0 , 2 .

We can also specify ranges of characters to match.

Match a single character in the range a ,
b , …, z .
Match a single character in the range 0 ‐ 9 .
Match a single character in the range a , b ,
c , d , 0 , 1 , …, 9 .



Regular expression concept 1: Character sets
We can use square brackets to create a character set.

Match one of the included characters, t , h , e .
As above.
Match one of the characters e , 0 , 2 .

We can also specify ranges of characters to match.

Match a single character in the range a ,
b , …, z .
Match a single character in the range 0 ‐ 9 .
Match a single character in the range a , b ,
c , d , 0 , 1 , …, 9 .



Shorthand replacements are available for several common sets:

Expression Meaning Equivalent to…

Any character

Digit
Not a digit

Word character
Not a word character

Whitespace character
Not a whitespace character



Regular expression concept 2: Repetition
We can repeat regular expressions:

The character t repeated three times.
Any three word characters.

But we can also use shorthand to express repetition:

Repeat preceding expression 0 or more times
Repeat preceding expression 1 or more times
Repeat preceding expression exactly three
times.

The above examples could thus be expressed more
succinctly as and .



Regular expression concept 2: Repetition
We can repeat regular expressions:

The character t repeated three times.
Any three word characters.

But we can also use shorthand to express repetition:

Repeat preceding expression 0 or more times
Repeat preceding expression 1 or more times
Repeat preceding expression exactly three
times.

The above examples could thus be expressed more
succinctly as and .



Regular expression concept 3: Match groups
• Often, we want to extract the search pattern from a
longer string.

• We can use match groups to help with this.

A match group is denoted with parentheses:

Having specified our groups, we can refer to them in later
expressions at , , …, .



You don’t have to remember all these expressions.

1. Learn the core expressions

2. For simple regular expressions, try writing from
memory, make mistakes, get help, repeat…

3. For anything complicated, use a helper tool.

https://regex101.com

https://regex101.com


Practical



Regular expressions in R
We’re using stringr , part of the tidyverse :

Function What it does Result

str_detect Does the string contain
this match?

TRUE / FALSE

str_count How many times does
this match occur?

Count

str_locate Where is this match
located (i.e. position)?

Position [start, end];
numeric

str_extract Extract the first match. The match.
str_match Extract all match groups. The matched groups, if

they occur.
str_replace Replace the first match. The original string, with

the match replaced.
str_split Split the string at match. Two strings.



str_detect
str_detect checks whether a string contains a regular
expression, a returns a logical value (i.e TRUE or FALSE ).

> target <- "A long time ago in a galaxy far..."
> str_detect(target, "time")
[1] TRUE
> str_detect(target, "away")
[1] FALSE
> str_detect(target, "\\bl")
[1] TRUE
> str_detect(target, "\\bG")
[1] FALSE
> str_detect("2018-10-30", "^\\d{4}-\\d{2}\\d{2}")
[1] TRUE

→ If you get stuck, try it on regex101.com.

http://regex101.com


str_detect
str_detect checks whether a string contains a regular
expression, a returns a logical value (i.e TRUE or FALSE ).

> target <- "A long time ago in a galaxy far..."
> str_detect(target, "time")
[1] TRUE
> str_detect(target, "away")
[1] FALSE
> str_detect(target, "\\bl")
[1] TRUE
> str_detect(target, "\\bG")
[1] FALSE
> str_detect("2018-10-30", "^\\d{4}-\\d{2}\\d{2}")
[1] TRUE

→ If you get stuck, try it on regex101.com.

http://regex101.com


str_match
str_match extracts matched groups from a string.

> names <- c("Luke Skywalker", "R2-D2",
> "Darth Vader")
> str_match(names, "(^\\w+).*")
[1,] "Luke Skywalker" "Luke"
[2,] "R2-D2" "R2"
[3,] "Darth Vader" "Darth"
> str_match(names, "(^[\\w-]+).*")
[1,] "Luke Skywalker" "Luke"
[2,] "R2-D2" "R2-D2"
[3,] "Darth Vader" "Darth"



str_match
str_match extracts matched groups from a string.

> names <- c("Luke Skywalker", "R2-D2",
> "Darth Vader")
> str_match(names, "(^\\w+).*")

[1,] "Luke Skywalker" "Luke"
[2,] "R2-D2" "R2"
[3,] "Darth Vader" "Darth"
> str_match(names, "(^[\\w-]+).*")
[1,] "Luke Skywalker" "Luke"
[2,] "R2-D2" "R2-D2"
[3,] "Darth Vader" "Darth"



str_match
str_match extracts matched groups from a string.

> names <- c("Luke Skywalker", "R2-D2",
> "Darth Vader")
> str_match(names, "(^\\w+).*")
[1,] "Luke Skywalker" "Luke"
[2,] "R2-D2" "R2"
[3,] "Darth Vader" "Darth"

> str_match(names, "(^[\\w-]+).*")
[1,] "Luke Skywalker" "Luke"
[2,] "R2-D2" "R2-D2"
[3,] "Darth Vader" "Darth"



str_match
str_match extracts matched groups from a string.

> names <- c("Luke Skywalker", "R2-D2",
> "Darth Vader")
> str_match(names, "(^\\w+).*")
[1,] "Luke Skywalker" "Luke"
[2,] "R2-D2" "R2"
[3,] "Darth Vader" "Darth"
> str_match(names, "(^[\\w-]+).*")
[1,] "Luke Skywalker" "Luke"
[2,] "R2-D2" "R2-D2"
[3,] "Darth Vader" "Darth"



> str_match(names, "(^[\\w-]+) *([\\w-]*)")
[,1] [,2] [,3]

[1,] "Luke Skywalker" "Luke" "Skywalker"
[2,] "R2-D2" "R2-D2" ""
[3,] "Darth Vader" "Darth" "Vader"



str_replace
str_replace replaces the pattern with another string.

> str_replace(names, "D", "G")
[1] "Luke Skywalker" "R2-G2" "Garth Vader"

> str_replace(names, "e", "!")
[1] "Luk! Skywalker" "R2-D2" "Darth Vad!r"

> str_replace_all(names, "e", "!")
[1] "Luk! Skywalk!r" "R2-D2" "Darth Vad!r"



Where to go next…



Next steps
1. Practice, practice, practice

• Apply what you’ve learnt to a specific project.
• Recognise that things will take longer at first.

2. Learn your editor (e.g., RStudio, Positron, VS Code)
3. Familiarise yourself with the command line.

https://jeroenjanssens.com/dsatcl/

4. Learn version control with Git.
5. Learn package management with renv.

https://rstudio.github.io/renv/

6. Build pipelines with Make or targets.
https://books.ropensci.org/targets/

7. Get involved in the community
https://rladies.org
https://posit.co/conference/
https://nhsrcommunity.com/conference24.html

https://jeroenjanssens.com/dsatcl/
https://rstudio.github.io/renv/
https://books.ropensci.org/targets/
https://rladies.org
https://posit.co/conference/
https://nhsrcommunity.com/conference24.html

	Manipulating text with regular expressions
	Where to go next…

